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This note serves as an executive summary of the results and techniques described in
Fault Tolerance in Networks of Bounded Degree by Dwork, Peleg, Pippenger, and Upfal [2].

Overview

In Fault Tolerance in Networks of Bounded Degree [2], the authors consider a distributed
computational model where some processors may be faulty. They model a distributed net-
work as a graph G = (V, E), where V is the (vertex) set of processors and F is the (edge)
set of connections in the network. In this work, the authors explore the setting where the
graph G has bounded degree. In particular, they are interested in the classical problem of
Byzantine agreement (BA), where all processors wish to simply agree on a common value in
{0,1}.

If some processors v € V are faulty, it is natural to ask to what extent the non-faulty pro-
cessors can still achieve Byzantine agreement. Unfortunately, for bounded degree networks,
total agreement is impossible for even tolerating a modest number of faults in the network:

Theorem 1 (Dolev, 1982 [1]). Let ¢ denote the number of faulty processors in a network G =
(V, E). Then Byzantine agreement cannot be achieved if G has connectivity less than ¢ + 1.

In particular, Dolev’s result implies that bounded degree networks can only tolerate a
constant number of faults (the degree of the graph) for Byzantine agreement. Motivated by
Dolev’s result, the authors of [2] consider the following relaxation of Byzantine agreement,
which we refer to as almost everywhere agreement (AEA). In AEA, we only require that a
large fraction of processors agree on a common value in {0, 1}. Thus the author’s goals are
twofold:

1. design (bounded degree) networks for which AEA can be achieved;
2. design protocols which achieve AEA on the specified networks.

The primary strategy employed by the authors is to create sparse networks which can sim-
ulate an arbitrary protocol on the complete network. This allows one to lift any protocol for
complete networks to a corresponding protocol for the specified bounded degree networks
(possibly with some degradation in the performance of the protocol).

Results For parameters ¢t and X, the authors say that a protocol achieves t-resilient X
agreement if all but X processors in V achieve agreement in the presence of ¢ failures. Using
this notion of AEA, the authors prove the following results.

Theorem 2 (Main results). 1. For all » > 5, almost all r-regular graphs admit ¢-resilient
O(t) agreement protocols for t < n'=¢, wheree(r) — Oasr — n.

2. The butterfly network™ admits ¢-resilient O(t log t) agreement for ¢t < cn/logn.

3. There exists a network of degree 9 that admits ¢-resilient O(t) agreement for ¢ <
cn/ logn.

* See Section 2.2
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4. For every ¢ with 0 < & < 1, there exists ¢ = ¢(¢) and a graph of degree O(n°) and ¢
resilient O(t) agreement for ¢ < cn.

5. If failures in the network can be authenticated, then for every » > 5 there exists
e = e(r) such that for all ¢ < en, almost all r-regular graphs admit ¢-resilient O(t)
agreement.

In this note, we focus on the first three results, as the last two are of a decidedly different
nature.

Simulation of the Complete Network

In this section, we describe the main technique employed in [2] to achieve AEA: simulation
of the complete network. First, we set up notation. As before, G = (V, E) is the network.
Let P be a fixed protocol which simulates message passing on the complete network. That
is, for any u, v € V and any message m, P allows u to send message m to v over the network
G (in the absence of faults).

o T is the set of faulty processors, and t = |T'|.

o Call u,v € V successful (for P) if whenever all w ¢ T follow the protocol P, any
message sent from u to v succeeds.

« Let Poor(G, T') denote the minimum set of correct nodes such that every pair u, v ¢
T U Poor(G, T) is successful.

p(G,t) = max {|Poor(G,T)|| |T| = t}.

Theorem 3. Suppose a protocol P’ on a complete graph tolerates t + P(G, t) faults. Then
the simulation of P’ using P can tolerate ¢ faults.

Proof sketch. Since all messages between u, v ¢ T'U Poor(G, T') are successful, only simu-
lated messages involving w € T'U Poor(G, T') could be corrupted. The result follows since
|T U Poor(G,T)| =t + p(G,t). O

Transmission scheme strategy The authors devise a class of protocols P (or transmis-
sion schemes) that simulate communication on the complete network which they refer to
as “three phase transmission schemes” The idea idea is that each vertex v € V specifies
sets Iyt (v) and Ty, (v) along with specified paths from v to each w in Tyt (v) and Ty, (v).
Further, for each pair v, u € V, vertex disjoint paths from I"5,,:(v) to I'y, (u) are specified.
Messages are sent from v to w in the following manner: the message is first broadcast from
v to Tyt (v) (along the specified paths), then sent from I'y,¢ (v) to Ty, (u), and finally from
T'in(u) to u. Since some messages may be corrupted, u takes the majority opinion of the
messages received. Intuitively, this scheme will be successful in networks for which T4, (v)
and I';;, (v) are large (so that there is a lot of redundancy in the messages sent), but such that
the specified paths are all small (to minimize the chances of a faulty transmission). Thus, we
expect they strategy to succeed for expander graphs.

Let s = |Tout(v)] = |Tin(v)]. Call a vertex v € V out bad if at least 1/8-th fraction of
paths from v to I',,4 (v) contain faulty processors, and similarly for in bad. Let Bad(G, T')
be the set of vertices which are out bad or in bad, and

b(G,1) = o {[Bad (G, T1}
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The following claim (whose proof is a simple counting argument) reveals that controlling
the number of bad vertices is sufficient to bound poor vertices in a transmission scheme.

Claim 4. If t < s/4, then p(G,t) < b(G, ).

The butterfly network The authors of [2] show that the following butterfly network admits
a good three phase transmission scheme. Let G,,, = (V},,, Ey,) be the network on m2™
vertices where

Vin ={(a,1)|0<a<m—-1,0<i<2™ -1}

and

((a,i),(b,5)) € Epy, <= b=a+1 mod mandi = joriand j differ only in ath bit.

Foreach (a, i) € Vi, wetake Ty ((a, 7)) = I'in((a,4)) = {(a,5) |7 =0,1,...,2™ — 1}.

The paths from (a, i) to Loyt ((a, 7)) are all “downward” edges from (a, 7), as are edges from
Tout((a,d)) to each Ty, ((b, 5))-
Claim 5. For the butterfly network, b(G,,,t) = O(tlogt).

Part 2 of Theorem 2 follows from Theorem 3 and Claims 4 and 5.

Random regular graphs Let H (r,n) denote the set of r-regular graphs on n vertices. Part
1 of Theorem 2 follows from the following theorem about H (r, n).

Theorem 6. Let r > 5 and choose G € H(r,n) uniformly at random. Then with high
probability, G admits a three phase transmission scheme with p(G,t) < O(t'* logt) for
t € O(n'=¢),where0 < § <e<lande=c¢(r) = 0asr — oc.

The proof of Theorem 6 comes from two lemmas concerning expansion and super-
concentration properties of random regular graphs.

Lemma 7 (Expansion). For all » > 5, there exists @ = «(r), 0 < « < 1 such that with
high probability G satisfies the following property: every U C V with |U| < an has at least
|U| (r — 3) neighbors outside of U.

Lemma 8 (Super-concentration). Suppose G has the property that all U C V with |U]| <
an has at least 2 |U| neighbors outside U. Then every two subsets U and W of V with
|U| = |V| < an are connected by |U]| vertex disjoint paths.

The proof of the expansion lemma uses the probabilistic method. The super-concentration
lemma appeals to a variant of Menger’s theorem, which characterizes the number of vertex
disjoint paths between sets in a graph.

Byzantine agreement on compressor graphs A graph G is called a §-compressor if for
every subset U C V of vertices with |U| < 6n, there are at most |U| /2 vertices which have
at least half their neighbors in U.

For compressor graphs, the authors of [2] consider the following protocol for Byzantine
agreement. In each round, all processors:

1. send their current value to their neighbors;
2. receive values from all neighbors;

3. choose new values based on the majority message received.



Fault Tolerance in Networks of Bounded Degree

Lemma 9. Suppose |T'| = t < On/2. If there are (1 — 0)n correct processors sharing the
same initial value x, then after log n iterations, at most ¢t — 1 correct processors will have a
value different from z.

To prove Lemma 9, the authors show that for Ay, = ((2% — 1)t + [Vp|) /2%, Ax +t < 6n
and |Vi| < Ayg. Here V; is the set of vertices with values other than x after k rounds. The
lemma follows by taking k& = log n.

Lemma 10. For r > 5, there exists f with 0 < 6 < 1 such that arandom graph G € H(r,n)
is a f-compressor with high probability.

Part 3 of Theorem 2 follows from Lemmas 9 and 10 and the following construction. Let
G be the 9-regular graph on m2™ vertices whose edge set is a disjoint union of the butterfly
network and a compressor graph. The butterfly network can be used to achieve O(tlog t)
agreement, while the compressor network can be applied to sharpen the agreement to O(t).

Open(?) Questions
The authors leave the following open questions:

1. Optimize the communication cost of protocols for almost every agreement.

2. Construct protocols which do not require processors to know the global topology of
the network.

3. Find protocols for ¢-resilient O(¢) agreement for ¢ € w(n/logn) (and in particular

t = §2(n)), or prove that no such protocol exists.
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