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�is note serves as an executive summary of the results and techniques described in
Fault Tolerance in Networks of Bounded Degree by Dwork, Peleg, Pippenger, and Upfal [2].

1 Overview

In Fault Tolerance in Networks of Bounded Degree [2], the authors consider a distributed
computational model where some processors may be faulty. �ey model a distributed net-
work as a graph G = (V,E), where V is the (vertex) set of processors and E is the (edge)
set of connections in the network. In this work, the authors explore the setting where the
graph G has bounded degree. In particular, they are interested in the classical problem of
Byzantine agreement (BA), where all processors wish to simply agree on a common value in
{0, 1}.

If some processors v ∈ V are faulty, it is natural to ask to what extent the non-faulty pro-
cessors can still achieve Byzantine agreement. Unfortunately, for bounded degree networks,
total agreement is impossible for even tolerating a modest number of faults in the network:

�eorem 1 (Dolev, 1982 [1]). Let t denote the number of faulty processors in a networkG =
(V,E). �en Byzantine agreement cannot be achieved ifG has connectivity less than t+1.

In particular, Dolev’s result implies that bounded degree networks can only tolerate a
constant number of faults (the degree of the graph) for Byzantine agreement. Motivated by
Dolev’s result, the authors of [2] consider the following relaxation of Byzantine agreement,
which we refer to as almost everywhere agreement (AEA). In AEA, we only require that a
large fraction of processors agree on a common value in {0, 1}. �us the author’s goals are
twofold:

1. design (bounded degree) networks for which AEA can be achieved;

2. design protocols which achieve AEA on the speci�ed networks.

�e primary strategy employed by the authors is to create sparse networks which can sim-
ulate an arbitrary protocol on the complete network. �is allows one to li� any protocol for
complete networks to a corresponding protocol for the speci�ed bounded degree networks
(possibly with some degradation in the performance of the protocol).

1.1 Results For parameters t and X , the authors say that a protocol achieves t-resilient X
agreement if all butX processors in V achieve agreement in the presence of t failures. Using
this notion of AEA, the authors prove the following results.

�eorem 2 (Main results). 1. For all r ≥ 5, almost all r-regular graphs admit t-resilient
O(t) agreement protocols for t ≤ n1−ε, where ε(r) → 0 as r → n.

2. �e butter�y network∗ ∗ See Section 2.2admits t-resilient O(t log t) agreement for t ≤ cn/ logn.

3. �ere exists a network of degree 9 that admits t-resilient O(t) agreement for t ≤
cn/ logn.
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4. For every ε with 0 < ε < 1, there exists c = c(ε) and a graph of degree O(nc) and t
resilient O(t) agreement for t ≤ cn.

5. If failures in the network can be authenticated, then for every r ≥ 5 there exists
ε = ε(r) such that for all t < εn, almost all r-regular graphs admit t-resilient O(t)
agreement.

In this note, we focus on the �rst three results, as the last two are of a decidedly di�erent
nature.

2 Simulation of the Complete Network

In this section, we describe the main technique employed in [2] to achieve AEA: simulation
of the complete network. First, we set up notation. As before, G = (V,E) is the network.
Let P be a �xed protocol which simulates message passing on the complete network. �at
is, for any u, v ∈ V and anymessagem, P allows u to sendmessagem to v over the network
G (in the absence of faults).

• T is the set of faulty processors, and t = |T |.

• Call u, v ∈ V successful (for P ) if whenever all w /∈ T follow the protocol P , any
message sent from u to v succeeds.

• LetPoor(G, T ) denote the minimum set of correct nodes such that every pair u, v /∈
T ∪ Poor(G, T ) is successful.

• p(G, t) = max {|Poor(G, T )| | |T | = t}.

�eorem 3. Suppose a protocol P ′ on a complete graph tolerates t + P (G, t) faults. �en
the simulation of P ′ using P can tolerate t faults.

Proof sketch. Since all messages between u, v /∈ T ∪Poor(G, T ) are successful, only simu-
lated messages involving w ∈ T ∪Poor(G, T ) could be corrupted. �e result follows since
|T ∪ Poor(G, T )| = t+ p(G, t).

2.1 Transmission scheme strategy �e authors devise a class of protocols P (or transmis-

sion schemes) that simulate communication on the complete network which they refer to
as “three phase transmission schemes.” �e idea idea is that each vertex v ∈ V speci�es
sets Γout(v) and Γin(v) along with speci�ed paths from v to eachw in Γout(v) and Γin(v).
Further, for each pair v, u ∈ V , vertex disjoint paths from Γout(v) to Γin(u) are speci�ed.
Messages are sent from v to u in the following manner: the message is �rst broadcast from
v to Γout(v) (along the speci�ed paths), then sent from Γout(v) to Γin(u), and �nally from
Γin(u) to u. Since some messages may be corrupted, u takes the majority opinion of the
messages received. Intuitively, this scheme will be successful in networks for which Γout(v)
and Γin(v) are large (so that there is a lot of redundancy in the messages sent), but such that
the speci�ed paths are all small (to minimize the chances of a faulty transmission). �us, we
expect they strategy to succeed for expander graphs.

Let s = |Γout(v)| = |Γin(v)|. Call a vertex v ∈ V out bad if at least 1/8-th fraction of
paths from v to Γout(v) contain faulty processors, and similarly for in bad. Let Bad(G, T )
be the set of vertices which are out bad or in bad, and

b(G, t) = max
|T |=t

{|Bad(G, T |} .
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�e following claim (whose proof is a simple counting argument) reveals that controlling
the number of bad vertices is su�cient to bound poor vertices in a transmission scheme.

Claim 4. If t < s/4, then p(G, t) ≤ b(G, t).

2.2 �ebutter�y network �e authors of [2] show that the following butter�y network admits
a good three phase transmission scheme. Let Gm = (Vm, Em) be the network on m2m

vertices where

Vm = {(a, i) | 0 ≤ a ≤ m− 1, 0 ≤ i ≤ 2m − 1}

and

((a, i), (b, j)) ∈ Em ⇐⇒ b ≡ a+ 1 mod m and i = j or i and j di�er only in ath bit.

For each (a, i) ∈ Vm, we takeΓout((a, i)) = Γin((a, i)) = {(a, j) | j = 0, 1, . . . , 2m − 1}.
�e paths from (a, i) to Γout((a, i)) are all “downward” edges from (a, i), as are edges from
Γout((a, i)) to each Γin((b, j)).

Claim 5. For the butter�y network, b(Gm, t) = O(t log t).

Part 2 of �eorem 2 follows from�eorem 3 and Claims 4 and 5.

2.3 Random regular graphs LetH(r, n) denote the set of r-regular graphs on n vertices. Part
1 of �eorem 2 follows from the following theorem aboutH(r, n).

�eorem 6. Let r ≥ 5 and choose G ∈ H(r, n) uniformly at random. �en with high
probability, G admits a three phase transmission scheme with p(G, t) ≤ O(t1+δ log t) for
t ∈ O(n1−ε), where 0 < δ < ε < 1 and ε = ε(r) → 0 as r → ∞.

�e proof of �eorem 6 comes from two lemmas concerning expansion and super-
concentration properties of random regular graphs.

Lemma 7 (Expansion). For all r ≥ 5, there exists α = α(r), 0 < α < 1 such that with
high probabilityG satis�es the following property: every U ⊆ V with |U | ≤ αn has at least
|U | (r − 3) neighbors outside of U .

Lemma 8 (Super-concentration). Suppose G has the property that all U ⊆ V with |U | ≤
αn has at least 2 |U | neighbors outside U . �en every two subsets U and W of V with
|U | = |V | ≤ αn are connected by |U | vertex disjoint paths.

�eproof of the expansion lemmauses the probabilisticmethod. �e super-concentration
lemma appeals to a variant of Menger’s theorem, which characterizes the number of vertex
disjoint paths between sets in a graph.

2.4 Byzantine agreement on compressor graphs A graph G is called a θ-compressor if for
every subset U ⊆ V of vertices with |U | ≤ θn, there are at most |U | /2 vertices which have
at least half their neighbors in U .

For compressor graphs, the authors of [2] consider the following protocol for Byzantine
agreement. In each round, all processors:

1. send their current value to their neighbors;

2. receive values from all neighbors;

3. choose new values based on the majority message received.
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Lemma 9. Suppose |T | = t ≤ θn/2. If there are (1 − θ)n correct processors sharing the
same initial value x, then a�er logn iterations, at most t − 1 correct processors will have a
value di�erent from x.

To prove Lemma 9, the authors show that forAk = ((2k− 1)t+ |V0|)/2
k,Ak+ t ≤ θn

and |Vk| ≤ Ak . Here Vk is the set of vertices with values other than x a�er k rounds. �e
lemma follows by taking k = logn.

Lemma 10. For r ≥ 5, there exists θ with 0 < θ < 1 such that a random graphG ∈ H(r, n)
is a θ-compressor with high probability.

Part 3 of �eorem 2 follows from Lemmas 9 and 10 and the following construction. Let
G be the 9-regular graph onm2m vertices whose edge set is a disjoint union of the butter�y
network and a compressor graph. �e butter�y network can be used to achieve O(t log t)
agreement, while the compressor network can be applied to sharpen the agreement toO(t).

3 Open(?) Questions

�e authors leave the following open questions:

1. Optimize the communication cost of protocols for almost every agreement.

2. Construct protocols which do not require processors to know the global topology of
the network.

3. Find protocols for t-resilient O(t) agreement for t ∈ ω(n/ logn) (and in particular
t = Ω(n)), or prove that no such protocol exists.
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