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Distributed Verification

Problem

Given a distributed network G = (V,E) and states ϕ(v) ∈ S for each
v ∈ V , determine if the graph configuration (G,ϕ) satisfies a boolean
predicate P .

Examples of distributed verification problem include:

acyclicity checking S = ∅ and P indicates that G is cycle-free.

proper coloring ϕ : V → S is coloring of the vertices of G and P indicates
that the coloring is proper (adjacent vertices have different
colors).

spanning tree ϕ defines a set of incident edges for each vertex, and P
indicates if the subgraph defined by the edges is a spanning
tree.

isomorphism P indicates that (G,ϕ) is isomorphic to some fixed graph
configuration (H,ψ).
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Previous Models

Many distributed verification problems require Ω(diam(G)) to solve...

...but can be solved much faster when vertices are given additional
labels (or certificates, or proofs):

I proof labeling schemes (PLS)
I nondeterministic local decision (NLD)
I locally checkable proofs (LCP)

In all of these models, verification occurs in O(1) time.
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Acyclicity PLS Example
Suppose we want to verify that (G,ϕ) is cycle-free...

An oracle picks a vertex from G to be the root, and gives each vertex
v a label `(v) consisting of its distance from the root.

Each vertex v sends `(v) to its neighbors in a single communication
round.
A vertex v accepts the labeling if either

1 `(v) = 0 and v receives all 1’s (i.e., v is the root), or
2 there is a unique neighbor u with `(u) = `(v)− 1 while all other

neighbors w satisfy `(w) = `(v) + 1.

Otherwise v rejects the label.
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Acyclicity PLS Example

The PLS for acyclicity satisfies the following two properties:

completeness If G is cycle free, then there exists a labeling ` such that all
vertices accept.

soundness If G contains a cycle, then for every labeling `, there exists a
vertex which rejects the labeling.

The PLS complexity of a problem is the minimum size of labels needed
to solve the problem.

Theorem (Korman, Kutten, Peleg, PODC 2010)

The PLS complexity of verifying acyclicity is Θ(log diam(G)).
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t-PLS

Question

Can PLS be made more efficient (label size) if we allow longer vertification
time? What are the tradeoffs between space and time for PLS verification?

Definition

A t-PLS for a predicate P consists of a prover and a verifier.

The prover is an oracle that assigns labels to the vertices of a network
configuration.

The verifier is a t-round distributed algorithm which verifies the
labeling produced by the prover.

The scheme must be both complete and sound.
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Lower Bounds
Main technique: edge crossings (generalizes Baruch, Fraigniaud,
Patt-Shamir, PODC ’15)

Suppose
1 (G,ϕ) satisfies P ,
2 (G,ϕ) has many edges e1, e2, . . . , ek with disjoint, isomorphic,
t-neighborhoods, and

3 “crossing” any pair of edges ei, ej results in a graph which does not
satisfy P .
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Then the labels for any t-PLS for P cannot be too small, or else
soundness fails:

I verifier cannot distinguish original configuration from crossed
configuration.

Theorem

Any t-PLS for acyclicity requires labels of size Ω
(
log diam(G)

t

)
.
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Upper Bounds
Main technique: label sharing

Start with a 1-PLS.

Observe correlations between nearby labels.

Break labels into smaller shares and distribute to nearby vertices,
while eliminating redundant information.

Example for acyclicity:

1100 1101 1110 1111

Theorem

There is a t-PLS for acyclicity which uses labels of size O
(
log diam(G)

t

)
.
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Other results

1 Label sharing improves complexity of isomorphism problem by
(1/t)-factor (universal scheme).

2 log∗ n-space implementation of acyclicity checker.
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Questions

Question

Are there problems for which t verification time...

improves label size by only (1/o(t))-factor?

does not improve label size at all?

THANK YOU!!!
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