Space-Time Tradeoffs for Distributed Verification

Mor Baruch¹ Rafail Ostrovsky² Will Rosenbaum²

¹Tel Aviv University

 2 UCLA

July 28, 2016

Distributed Verification

Problem

Given a distributed network G=(V,E) and states $\varphi(v)\in S$ for each $v\in V$, determine if the **graph configuration** (G,φ) satisfies a boolean predicate P.

Distributed Verification

Problem

Given a distributed network G=(V,E) and states $\varphi(v)\in S$ for each $v\in V$, determine if the **graph configuration** (G,φ) satisfies a boolean predicate P.

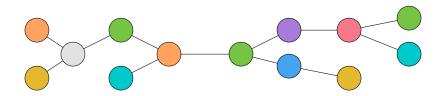
Examples of distributed verification problem include:

- acyclicity checking $S=\varnothing$ and P indicates that G is cycle-free.
- proper coloring $\varphi:V\to S$ is coloring of the vertices of G and P indicates that the coloring is proper (adjacent vertices have different colors).
- spanning tree φ defines a set of incident edges for each vertex, and P indicates if the subgraph defined by the edges is a spanning tree.
- isomorphism P indicates that (G,φ) is isomorphic to some fixed graph configuration (H,ψ) .

Previous Models

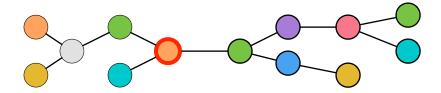
- ullet Many distributed verification problems require $\Omega(\operatorname{diam}(G))$ to solve...
- ...but can be solved much faster when vertices are given additional labels (or certificates, or proofs):
 - proof labeling schemes (PLS)
 - nondeterministic local decision (NLD)
 - locally checkable proofs (LCP)
- In all of these models, verification occurs in O(1) time.

Suppose we want to verify that (G,φ) is cycle-free...



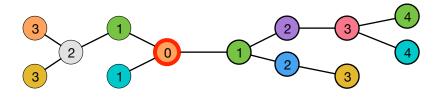
Suppose we want to verify that (G,φ) is cycle-free...

• An oracle picks a vertex from G to be the root, and gives each vertex v a label $\ell(v)$ consisting of its distance from the root.



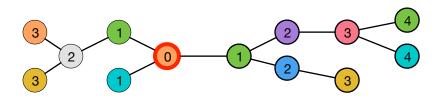
Suppose we want to verify that (G, φ) is cycle-free...

- ullet An oracle picks a vertex from G to be the root, and gives each vertex v a label $\ell(v)$ consisting of its distance from the root.
- \bullet Each vertex v sends $\ell(v)$ to its neighbors in a single communication round.



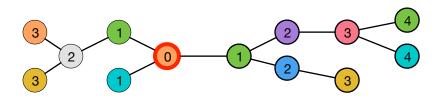
Suppose we want to verify that (G, φ) is cycle-free...

- ullet An oracle picks a vertex from G to be the root, and gives each vertex v a label $\ell(v)$ consisting of its distance from the root.
- \bullet Each vertex v sends $\ell(v)$ to its neighbors in a single communication round.
- A vertex v accepts the labeling if either
 - $\ell(v) = 0$ and v receives all 1's (i.e., v is the root), or
 - ② there is a unique neighbor u with $\ell(u) = \ell(v) 1$ while all other neighbors w satisfy $\ell(w) = \ell(v) + 1$.



Suppose we want to verify that (G, φ) is cycle-free...

- ullet An oracle picks a vertex from G to be the root, and gives each vertex v a label $\ell(v)$ consisting of its distance from the root.
- Each vertex v sends $\ell(v)$ to its neighbors in a single communication round.
- A vertex v accepts the labeling if either
 - $\ell(v) = 0$ and v receives all 1's (i.e., v is the root), or
 - ② there is a unique neighbor u with $\ell(u) = \ell(v) 1$ while all other neighbors w satisfy $\ell(w) = \ell(v) + 1$.
- ullet Otherwise v rejects the label.



The PLS for acyclicity satisfies the following two properties:

completeness If G is cycle free, then there exists a labeling ℓ such that all vertices accept.

soundness If G contains a cycle, then for every labeling ℓ , there exists a vertex which rejects the labeling.

The PLS **complexity** of a problem is the minimum **size** of labels needed to solve the problem.

Theorem (Korman, Kutten, Peleg, PODC 2010)

The PLS complexity of verifying acyclicity is $\Theta(\log \operatorname{diam}(G))$.

t-PLS

Question

Can PLS be made more efficient (label size) if we allow longer vertification time? What are the tradeoffs between space and time for PLS verification?

t-PLS

Question

Can PLS be made more efficient (label size) if we allow longer vertification time? What are the tradeoffs between space and time for PLS verification?

Definition

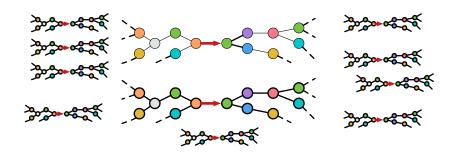
A t-PLS for a predicate P consists of a **prover** and a **verifier**.

- The prover is an oracle that assigns labels to the vertices of a network configuration.
- The verifier is a *t*-round distributed algorithm which verifies the labeling produced by the prover.
- The scheme must be both complete and sound.

Lower Bounds

Main technique: **edge crossings** (generalizes Baruch, Fraigniaud, Patt-Shamir, PODC '15)

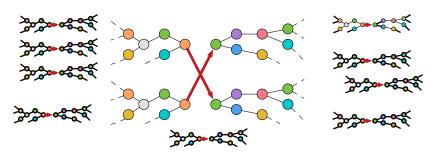
- Suppose
 - (G,φ) satisfies P,
 - ② (G,φ) has many edges e_1,e_2,\ldots,e_k with disjoint, isomorphic, t-neighborhoods, and



Lower Bounds

Main technique: **edge crossings** (generalizes Baruch, Fraigniaud, Patt-Shamir, PODC '15)

- Suppose
 - (G,φ) satisfies P,
 - ② (G,φ) has many edges e_1,e_2,\ldots,e_k with disjoint, isomorphic, t-neighborhoods, and
 - $oldsymbol{3}$ "crossing" any pair of edges e_i,e_j results in a graph which does not satisfy P.



Lower Bounds

Main technique: **edge crossings** (generalizes Baruch, Fraigniaud, Patt-Shamir, PODC '15)

- Suppose
 - (G, ϕ) satisfies P,
 - ② (G,ϕ) has many edges e_1,e_2,\ldots,e_k with disjoint, isomorphic, t-neighborhoods, and
 - $oldsymbol{3}$ "crossing" any pair of edges e_i,e_j results in a graph which does not satisfy P.
- Then the labels for any t-PLS for P cannot be too small, or else soundness fails:
 - verifier cannot distinguish original configuration from crossed configuration.

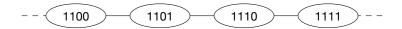
Theorem

Any t-PLS for acyclicity requires labels of size $\Omega\left(\frac{\log \operatorname{diam}(G)}{t}\right)$.

Main technique: label sharing

• Start with a 1-PLS.

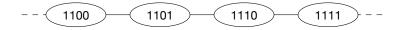
Example for acyclicity:



Main technique: label sharing

- Start with a 1-PLS.
- Observe correlations between nearby labels.

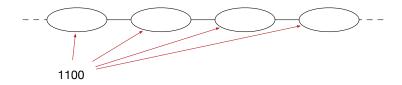
Example for acyclicity:



Main technique: label sharing

- Start with a 1-PLS.
- Observe correlations between nearby labels.
- Break labels into smaller **shares** and distribute to nearby vertices, while eliminating redundant information.

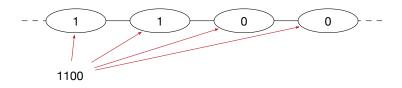
Example for acyclicity:



Main technique: label sharing

- Start with a 1-PLS.
- Observe correlations between nearby labels.
- Break labels into smaller **shares** and distribute to nearby vertices, while eliminating redundant information.

Example for acyclicity:



Theorem

There is a t-PLS for acyclicity which uses labels of size $O\left(\frac{\log \operatorname{diam}(G)}{t}\right)$.

Other results

- **1** Label sharing improves complexity of **isomorphism** problem by (1/t)-factor (**universal scheme**).

Questions

Question

Are there problems for which t verification time...

- improves label size by only (1/o(t))-factor?
- does not improve label size at all?

Questions

Question

Are there problems for which t verification time...

- ullet improves label size by only (1/o(t))-factor?
- does not improve label size at all?

THANK YOU!!!