Tutorial 10 Exercise Solutions

COMP526: Efficient Algorithms
09-10 December, 2024

Exercise 1. In our lectures on parallel algorithms, we saw a PRAM algorithm that solves
string matching for searching for a pattern P[0..m) in a text T'[0..n) with span ©(m) and
work ©(n). The output of this algorithm, however, was different from the original set-
ting of pattern matching we discussed earlier in the semester. In particular, the output
of a parallel algorithm was an array M|[0..n) such that M[i] =1 if T contains a match to
P atindex i and M[i] = 0 otherwise.

(a) Devise a PRAM algorithm that modifies the array M such that after applying your
algorithm, M|[n — 1] stores the total number of matches of P in T. The span of
your procedure should be O(logn) and its work should be O(n).

(Hint: try a divide and conquer approach.)

(b) Explain how your procedure from part (a) can be modified (or extended) to pro-
duce the index of the first instance of P in T (assuming there is a match). The
span and work of the updated procedure should be (asymptotically) no worse
than your first procedure.

For simplicity, you may assume that 7, the length of the text, is a power of 2, say n = 2*.

Solution. For the first part, first observe that the total number of occurrences of P in T
is the sum of the entries in M. This is because match of P in T corresponds to exactly
one 1-entry in M. Therefore, our goal for the first part is to update M such that M[n—1]
is the sum of the original values in M.

Following the suggestion to use the divide and conquer approach, a natural way of
dividing the array M would be to split it in half by index. We can sum the values in
M]0..n/2) and M([n/2..n) independently of each other, then add the two sums to get
the total number of 1s in M. A recursive implementation of this approach would give
the following procedure:

1: procedure SUM(M[¢..r))> Sum the elements of M from indices ¢ to r — 1 and store
the result at M|[r —1]

2 if r =/ +1 return

3 m—{l+r)/2 > The midpoint of the interval
4: SuM(M[¥¢, m)) > Sum the left half and store sum in M[m — 1]
5: SuM(M|[m,1)] > Sum the right half and store sum in M[r —1]
6: M[r—-11=M[m-1]+ M[r —1] > Store the sum of sums in M[r — 1]
7: end procedure

Note that the depth of recursion for this solution is ®(logn). Moreover, the recursive
calls can be performed in parallel, as they are independent of each other.

In order to analyze the work and span of a parallelized variant of the SUM proce-
dure, it is instructive to write a non-recursive version of the same procedure that per-
forms the same operations of SUM. To this end, consider the operations performed by
SuM at depth k — 1 (where n = 2¥). In this case the two recursive calls to SUM don't
do anything, so only Line 6 has any effect. Specifically, after all calls at depth k —1 are
completed, the effect is that

M([1] — MI0] + M([1]
MI3] — M[2] + M[3]
MI[5] — M[4]+ M[5]

Mn—-1] —M[n-2]+M[n-1]
Similarly, at depth k — 2, the values are updated as follows:

MI[3] — M[1] + M[3]
MI[7] — M[5]+ M[7]
MI(11] < MI[9] + M[11]

Mn—-1]—M[n-3]+M[n-1]

More generally, at depth k — d, each index i that is one less than a multiple of 24 is
updated to the sum M|[i] + M[i — 24-11 " After this operation, M[i] stores the sum the
original entries of M[i — 2% + 1..i].

Unrolling the recursive computations in this way, we obtain the following parallel
procedure:

1: procedure PARALLELSUM(M[0..25), n = 2%)

2 ford=1,2,...,kdo

3 w—24 > the width of the subinterval being summed
4: fori=w-1,2w-1,...n—1in parallel do

5: Mli] — M[i]+ M[i — w/2]

6 end for

7 end for

8: end procedure

To analyze the span of the procedure, observe that the inner loop (lines 4-6) has
span O(1) because all operations are performed in parallel. The iterations of the outer
loop (lines 2-7) are performed sequentially, but there are only logn iterations per-
formed, each with span O(1) Thus, the overall span is ®(logn). For the work, note
that for w = 24, there are n/2¢ iterations of the inner loop, and iteration does ©(1)
work. Summing over the iterations of the outer loop, we find the number of iterations
performed is

k 00
n o n n 1
++...+1:E —,<n§ — =n.
2 4 2! =12l

Thus, the total work is ©(n).

To modify the procedure to find first index where P matches T, note that we are
searching for the first index i for which M[i] > 0. We can use the array M produced by
running PARALLELSUM. Specifically, after running PARALLELSUM, for any odd positive
integer ¢, M [c29 — 1] stores the number matches between indices (¢ — 1)29 and ¢29 —
1. To find the smallest index i with M[i] > 0, we can perform binary search, starting
with j = n—1 = 2K~ 1. An iterative version of binary search is implemented with the
following pseudocode:

1: procedure FIRSTMATCH(M|[0..n), n = 2k
2 j—n-1

3 for w=2k"12k2 1do

4: if M[j — w] > 0 then

5 j—Jj—w

6 end if

7: end for

8: end procedure

This procedure runs in © (k) = ©(log n) sequential steps from a single processors. Thus,
performing this after running PARALLELSUM has an overall span of ©(logn) and an
additional ©(log n) work. O

Exercise 2. Consider the text T = abbabbaa$. What is n here? (Exactly follow the con-
vention from the lecture!) Construct/draw the

(a) standard (not compacted) trie of all suffixes of T,
(b) suffix tree of T (human version) with string labels on edges and leaves,

(c) suffix tree of T (computer version) as it is stored, i.e., offsets in nodes, starting
index in leaves, first characters on edges.

Solution. The value of n is 8. The trees are drawn on the following page. O

Teie ((with walobeled le,cwl.s)

= abbabbaad

\

.

SURC R R R A .
~6dd dg & 6 &80
L 6 88 8 3 4
“ao000 b0
>S00 0400

TN Y s 8 o
A
¥~2ao
ﬂl.m|ln|D

@M.D&

Huwman Readible Swhfiy Teer

Aokl Subfiy Teee

