
Tutorial 10 Exercise Solutions

COMP526: Efficient Algorithms

09–10 December, 2024

Exercise 1. In our lectures on parallel algorithms, we saw a PRAM algorithm that solves
string matching for searching for a pattern P [0..m) in a text T [0..n) with spanΘ(m) and
work Θ(n). The output of this algorithm, however, was different from the original set-
ting of pattern matching we discussed earlier in the semester. In particular, the output
of a parallel algorithm was an array M [0..n) such that M [i] = 1 if T contains a match to
P at index i and M [i] = 0 otherwise.

(a) Devise a PRAM algorithm that modifies the array M such that after applying your
algorithm, M [n − 1] stores the total number of matches of P in T . The span of
your procedure should be O(logn) and its work should be O(n).
(Hint: try a divide and conquer approach.)

(b) Explain how your procedure from part (a) can be modified (or extended) to pro-
duce the index of the first instance of P in T (assuming there is a match). The
span and work of the updated procedure should be (asymptotically) no worse
than your first procedure.

For simplicity, you may assume that n, the length of the text, is a power of 2, say n = 2k .

Solution. For the first part, first observe that the total number of occurrences of P in T
is the sum of the entries in M . This is because match of P in T corresponds to exactly
one 1-entry in M . Therefore, our goal for the first part is to update M such that M [n−1]
is the sum of the original values in M .

Following the suggestion to use the divide and conquer approach, a natural way of
dividing the array M would be to split it in half by index. We can sum the values in
M [0..n/2) and M [n/2..n) independently of each other, then add the two sums to get
the total number of 1s in M . A recursive implementation of this approach would give
the following procedure:

1: procedure SUM(M [ℓ..r))▷ Sum the elements of M from indices ℓ to r −1 and store
the result at M [r −1]

2: if r = ℓ+1 return
3: m ← (ℓ+ r)/2 ▷ The midpoint of the interval
4: SUM(M [ℓ,m)) ▷ Sum the left half and store sum in M [m −1]
5: SUM(M [m,r)] ▷ Sum the right half and store sum in M [r −1]
6: M [r −1] = M [m −1]+M [r −1] ▷ Store the sum of sums in M [r −1]
7: end procedure

1

Note that the depth of recursion for this solution is Θ(logn). Moreover, the recursive
calls can be performed in parallel, as they are independent of each other.

In order to analyze the work and span of a parallelized variant of the SUM proce-
dure, it is instructive to write a non-recursive version of the same procedure that per-
forms the same operations of SUM. To this end, consider the operations performed by
SUM at depth k − 1 (where n = 2k). In this case the two recursive calls to SUM don’t
do anything, so only Line 6 has any effect. Specifically, after all calls at depth k −1 are
completed, the effect is that

M [1] ← M [0]+M [1]

M [3] ← M [2]+M [3]

M [5] ← M [4]+M [5]

...

M [n −1] ← M [n −2]+M [n −1]

Similarly, at depth k −2, the values are updated as follows:

M [3] ← M [1]+M [3]

M [7] ← M [5]+M [7]

M [11] ← M [9]+M [11]

...

M [n −1] ← M [n −3]+M [n −1]

More generally, at depth k −d , each index i that is one less than a multiple of 2d is
updated to the sum M [i]+M [i −2d−1]. After this operation, M [i] stores the sum the
original entries of M [i −2d +1..i].

Unrolling the recursive computations in this way, we obtain the following parallel
procedure:

1: procedure PARALLELSUM(M [0..2k), n = 2k)
2: for d = 1,2, . . . ,k do
3: w ← 2d ▷ the width of the subinterval being summed
4: for i = w −1,2w −1, . . .n −1 in parallel do
5: M [i] ← M [i]+M [i −w/2]
6: end for
7: end for
8: end procedure

To analyze the span of the procedure, observe that the inner loop (lines 4–6) has
span Θ(1) because all operations are performed in parallel. The iterations of the outer
loop (lines 2–7) are performed sequentially, but there are only logn iterations per-
formed, each with span O(1) Thus, the overall span is Θ(logn). For the work, note
that for w = 2d , there are n/2d iterations of the inner loop, and iteration does Θ(1)
work. Summing over the iterations of the outer loop, we find the number of iterations
performed is

n

2
+ n

4
+·· ·+1 =

k∑
j=1

n

2 j
< n

∞∑
j=1

1

2 j
= n.

2

Thus, the total work is Θ(n).
To modify the procedure to find first index where P matches T , note that we are

searching for the first index i for which M [i] > 0. We can use the array M produced by
running PARALLELSUM. Specifically, after running PARALLELSUM, for any odd positive
integer c, M [c2d −1] stores the number matches between indices (c −1)2d and c2d −
1. To find the smallest index i with M [i] > 0, we can perform binary search, starting
with j = n −1 = 2k −1. An iterative version of binary search is implemented with the
following pseudocode:

1: procedure FIRSTMATCH(M [0..n), n = 2k)
2: j ← n −1
3: for w = 2k−1,2k−2, . . . ,1 do
4: if M [j −w] > 0 then
5: j ← j −w
6: end if
7: end for
8: end procedure

This procedure runs inΘ(k) =Θ(logn) sequential steps from a single processors. Thus,
performing this after running PARALLELSUM has an overall span of Θ(logn) and an
additional Θ(logn) work.

Exercise 2. Consider the text T = abbabbaa$. What is n here? (Exactly follow the con-
vention from the lecture!) Construct/draw the

(a) standard (not compacted) trie of all suffixes of T ,

(b) suffix tree of T (human version) with string labels on edges and leaves,

(c) suffix tree of T (computer version) as it is stored, i.e., offsets in nodes, starting
index in leaves, first characters on edges.

Solution. The value of n is 8. The trees are drawn on the following page.

3

Trie (with unlabeled leaves)
T = abbabbaa$

Prefixes :

$ b

012345678-
a bbabbaa$ ⑧ O

b babba a$ -b
D O

babbaa$ *a bbaa$ a

bba a $ ⑳

g
a

as
$ Oa

$

baa$

a i b
0

a
Human Readible Suffix Tree # 8

I$

9 ⑳

Ta·
#

Actual SuffixTree

-
Bg A
o9
* h

- #

