Tutorial 8 Exercises

COMP526: Efficient Algorithms

25–26 November, 2024

Exercise 1. What is the result of applying the Lempel-Ziv-Welch (LZW) compression scheme to the text S = ABABABACABABA with alphabet Σ = {A,B,C} using codewords 4 bits? Write both the encoded text and the dictionary when the procedure terminates.

Exercise 2. Use the LZW decoding algorithm to decode the encoded text 000101000100011000110001001 (or as a decimal list 1,4,4,2,3,0,9) where the alphabet is $\Sigma = \{!, A, G, H\}$ and the codeword length is 4 bits. Also record the dictionary after decoding the text.

Exercise 3. Use the inverse move-to-front transform to decode the encoded text 1,2,3,1,4,4,2,2,2 using the alphabet $\Sigma = \{A, C, H, I, U\}$. Write the state of the alphabet after each decoded letter

Exercise 4. Use the inverse Burrows-Wheeler transform to decode the text dnenb\$aaraab