Tutorial 8 Exercise Solutions

COMP526: Efficient Algorithms

25–26 November, 2024

Exercise 1. What is the result of applying the Lempel-Ziv-Welch (LZW) compression scheme to the text *S* = ABABABACABABA with alphabet $\Sigma = \{A, B, C\}$ using codewords 4 bits? Write both the encoded text and the dictionary when the procedure terminates.

Solution. Using the LZW encoding algorithm, the binary text encodes to 000000100110101001001010100

In a more human-readable format, this is the list 0,1,3,5,2,5,4. When the execution terminates, the dictionary contains the following values:

codeword	phrase
0000	А
0001	В
0010	С
0011	AB
0100	BA
0101	ABA
0110	ABAC
0111	CA
1000	ABAB

Exercise 2. Use the LZW decoding algorithm to decode the encoded text 000101000100010001100001001

(or as a decimal list 1,4,4,2,3,0,9) where the alphabet is $\Sigma = \{!, A, G, H\}$ and the codeword length is 4 bits. Also record the dictionary after decoding the text.

Solution. The coded text decodes to AAAAAGH!!!!. The dictionary's contents is

phrase
!
A
G
Н
AA
AAA
AAG
GH
H!
!!

Exercise 3. Use the inverse move-to-front transform to decode the encoded text 1,2,3,1,4,4,2,2,2 using the alphabet $\Sigma = \{A, C, H, I, U\}$. Write the state of the alphabet after each decoded letter

Solution. The decoded text is CHIHUAHUA. The full execution is depicted below.

index	decoded character	alphabet
		ACHIU
1	С	CAHIU
2	Н	HCAIU
3	I	IHCAU
1	Н	HICAU
4	U	UHICA
4	А	AUHIC
2	Н	HAUIC
2	U	UHAIC
2	A	AUHIC

Exercise 4. Use the inverse Burrows-Wheeler transform to decode the text dnenb\$aaraab

Solution. Recall that to apply the inverse Burrows-Wheeler transform, we first form character-index pairs:

(d,0)
(n, 1)
(e,2)
(n, 3)
(b, 4)
(\$,5)
(<i>a</i> ,6)
(a, 7)
(<i>r</i> ,8)
(<i>a</i> ,9)
(<i>a</i> ,10)
(<i>b</i> ,11)

Sorting this by first element gives

0	(\$,5)
1	(<i>a</i> ,6)
2	(a, 7)
3	(<i>a</i> ,9)
4	(<i>a</i> , 10)
5	(b,4)
6	(<i>b</i> ,11)
7	(d,0)
8	(e,2)
9	(n, 1)
10	(n, 3)
11	(<i>r</i> ,8)

Using the second entries of the pairs as "links" and following the linked list starting from \$ gives, bananabread\$. $\hfill \Box$