Tutorial 7 Exercises

COMP526: Efficient Algorithms

18–19 November, 2024

Exercise 1. Compress the text T = HANNAHBANSBANANASMAN using a Huffman code; give

- 1. the character frequencies,
- 2. a step-by-step construction of the Huffman tree,
- 3. the Huffman code, and
- 4. the encoded text.
- 5. Finally, compute the compression ratio of the result (ignoring space needed to store the Huffman code).

Recall that we use the following conventions for building a Huffman tree:

- When merging two characters/nodes in the tree, the lower weight node becomes the left (0) child of the parent.
- Whenever there is a tie between weights, the node containing the alphabetically first child becomes the the left child of the parent.

Exercise 2. Prove the following *no-free-lunch* theorems for lossless compression.

1. Weak version: For every compression algorithm *A* and $n \in \mathbb{N}$ there is an input $w \in \Sigma^n$ for which $|A(w)| \ge |w|$, i. e. the "compression" result is no shorter than the input.

Hint: Try a proof by contradiction. There are different ways to prove this.

2. *Strong version:* For every compression algorithm *A* and $n \in \mathbb{N}$ it holds that

$$|\{w \in \Sigma^{\leq n} : |A(w)| < |w|\}| < \frac{1}{2} \cdot |\Sigma^{\leq n}|$$

In words, less than half of all inputs of length at most *n* can be compressed below their original size.

Hint: Start by determining $|\Sigma^{\leq n}| = |\Sigma^{0}| + |\Sigma^{1}| + \dots + |\Sigma^{n}|$.

The theorems hold for every non-unary alphabet, but you can restrict yourself to the binary case, i.e., $\Sigma = \{0, 1\}$.

We denote by Σ^* the set of all (finite) strings over alphabet Σ and by $\Sigma^{\leq n}$ the set of all strings with size $\leq n$. As the domain of (all) compression algorithms, we consider the set of (all) *injective* functions in $\Sigma^* \to \Sigma^*$, i.e., functions that map any input string to some output string (encoding), where no two strings map to the same output.