Tutorial 7 Exercise Solutions

COMP526: Efficient Algorithms

18–19 November, 2024

Exercise 1. Compress the text $T =$ HANNAHBANSBANANASMAN using a Huffman code; give

- 1. the character frequencies,
- 2. a step-by-step construction of the Huffman tree,
- 3. the Huffman code, and
- 4. the encoded text.
- 5. Finally, compute the compression ratio of the result (ignoring space needed to store the Huffman code).

Recall that we use the following conventions for building a Huffman tree:

- When merging two characters/nodes in the tree, the lower weight node becomes the left (0) child of the parent.
- Whenever there is a tie between weights, the node containing the alphabetically first child becomes the the left child of the parent.

Solution. 1. Frequencies:

 $char A$ B H M N S weight $7 \t2 \t2 \t1 \t6 \t2$

2. We proceed step by step; remember the tie-breaking rules!

Note: Using the correct tie-breaking rules is absolutely critical! If there were ambiguity in the construction of the code, an encoder-decoder pair might not be able to correct reconstruct the source text.

(i) mins: M and B, new symbol $\{MB\}$ with weight 3.

char $|A|$ $\{MB\}$ H N S weight $\begin{vmatrix} 7 & 3 & 2 & 6 & 2 \end{vmatrix}$

(ii) mins: H and S, new symbol $\{$ H_S\} with weight 4.

char $|A|$ $\{\overline{MB}\}$ $\overline{\text{HIS}}$ N weight $\begin{array}{ccc} 7 & 3 & 4 & 6 \end{array}$

(iii) mins: $\{MB\}$ and $\{HS\}$; new symbol with weight 7

char \vert A $\left\{ \frac{\text{[MB]}}{\text{[HB]}} \right\}$ l N weight $\begin{array}{ccc} 7 & 7 & 6 \end{array}$ (iv) min: N and A, new symbol $\overline{\text{[NA]}}$ with weight 13 (v) only two left, new symbol $\left\{ \left| \left\{ \frac{\left[MB\right]}{\left[HB\right]} \right|\right\} \right\}$ $\overline{\text{NA}}\}$ $\overline{\mathfrak{l}}$ Note that the nested boxes encode the trie uniquely:

3. The actual Huffman code is

- 4. *C* = 010 11 10 10 11 010 001 11 10 011 001 11 10 11 10 11 011 000 11 10
- 5. Compression ratio is

$$
\frac{47}{20 \cdot \text{lg}(6)} \approx 0.909
$$

Exercise 2. Prove the following *no-free-lunch* theorems for lossless compression.

1. Weak version: For every compression algorithm *A* and $n \in \mathbb{N}$ there is an input *w* ∈ Σ ^{*n*} for which $|A(w)| \ge |w|$, i.e. the "compression" result is no shorter than the input.

Hint: Try a proof by contradiction. There are different ways to prove this.

2. Strong version: For every compression algorithm *A* and $n \in \mathbb{N}$ it holds that

$$
\left|\{w\in \Sigma^{\leq n}: |A(w)| < |w|\}\right| < \frac{1}{2} \cdot \left|\Sigma^{\leq n}\right|.
$$

In words, less than half of all inputs of length at most *n* can be compressed below their original size.

Hint: Start by determining $|\Sigma^{\leq n}| = |\Sigma^0| + |\Sigma^1| + \cdots + |\Sigma^n|$.

The theorems hold for every non-unary alphabet, but you can restrict yourself to the binary case, i.e., $\Sigma = \{0, 1\}$.

We denote by Σ^* the set of all (finite) strings over alphabet Σ and by $\Sigma^{\leq n}$ the set of all strings with size $\leq n$. As the domain of (all) compression algorithms, we consider the set of (all) *injective* functions in $\Sigma^* \to \Sigma^*$, i.e., functions that map any input string to some output string (encoding), where no two strings map to the same output.

 \Box

Solution. 1. Let $\Sigma = \{0,1\}$. Assume, *A* is a compression method that always reduces its input size. That means, $A(\Sigma^n) \subseteq \Sigma^{\leq n-1}$. But we have $|\Sigma^n| = 2^n$ whereas

$$
|\Sigma^{\leq n-1}| = \sum_{i=0}^{n-1} 2^i = 2^n - 1,
$$

so *A* cannot be injective, a contradiction.

An alternative argument is by applying *A* iteratively. If *A* would always reduce the input size, after at most *n* steps, we have $A(A(\cdots(w))\cdots) = \varepsilon$ the empty string, for any input $w \in \Sigma^n$. Since *A* has a unique inverse A^{-1} , its decoder, applying A^{-1} some $k \le n$ times to ε must reproduce every $w \in \Sigma^n$, but obviously $(A^{-1})^k(\varepsilon)$ can produce at most *n* different source texts (for $k = 1,..., n$) in $\Sigmaⁿ$, whereas $|\Sigmaⁿ|$ = $2^n > n$ for $n \geq 2$.

2. We note that

$$
\left|\Sigma^{\leq n}\right| = \sum_{i=0}^{n} 2^i = 2^{n+1} - 1.
$$

Consider $A(\Sigma^{\leq n})$, i.e., the set of codewords assigned to all strings up to length *n*. These are $2^{n+1} - 1$ many strings, but there are only $|\Sigma^{\leq n-1}| = 2^n - 1$ bit strings that are *strictly* shorter than *n*. That means $A(\Sigma^{\leq n})$ has to contain $2^{n+1} - 1 - (2^n - 1) =$ 2^{*n*} strings *w* of length at least *n*; for any of these holds $A(w) \ge |w|$, and they comprise more than half of $\Sigma^{\leq n}$.

 \Box