Tutorial 5 Exercise Solutions

COMP526: Efficient Algorithms

3–4 November, 2024

Exercise 1. Suppose an array *a* is "almost sorted" in the sense that if *a* stores the values $c_0 \le c_0 \le c_3 \le \cdots \le c_{n-1}$, then $c_i = a[j]$ where $|j - i| \le k$. That is, the final (sorted) index of each value in *a* is no more than *k* from its initial index in *a*. Argue that on input *a*, the INSERTIONSORT algorithm will terminate after at most *O*(*nk*) steps.

1: **procedure** INSERTIONSORT(*a*,*n*) 2: **for** *i* = 1,2,...,*n* −1 **do**

```
3: i \leftarrow i4: while j > 0 and a[j] < a[j −1] do
5: SWAP(a, j, j-1)6: j \leftarrow j-17: end while
8: end for
9: end procedure
```
Solution. Consider the case where *a* satisfies the condition stated in the exercise description: every element in *a* is within distance *k* of its correct sorted position. In particular, this means that the *k* smallest elements in *a* are initially stored in *a*[1...2*k*]. After 2*k* iterations of the outer for loop of InsertionSort, the first *k* elements of *a* are sorted using $O(k^2)$ operations. Similarly, after k more iterations, the next k elements are sorted (using another $O(k^2)$ operations). Arguing in this way, we find that every *k* iterations of the outer loop, the next *k* elements are sorted using $O(k^2)$ operations. Thus all elements are sorted after n/k "rounds," each consisting of $O(k^2)$ operations. Therefore, the total number of operations performed by InsertionSort is $(n/k)O(k^2)$ = *O*(*kn*). \Box

Exercise 2. Suppose we are given two arrays *a* and *b* of size *n* that store two distinct permutations of {1,2,...,*n*}. That is, both *a* and *b* store each of the numbers from 1 to *n*, but the two arrays differ in their values at at least one index. Consider a sequence of swap operations S_1, S_2, \ldots, S_m that are applied to both *a* and *b*, where each S_i swaps the values at two indices of the array it is applied to. Argue that after performing the swap operations, *a* and *b* are still distinct. In particular, the same sequence of swaps cannot sort both arrays.

Solution. We claim that after each swap operation, we have $a \neq b$. That is, there exists some index j_i such that $a[j_i] \neq b[j_i]$. We argue by induction on *m*, the number of swaps applied.

For the base case, $m = 0$, no swaps are applied, so let j_0 be an index where $a[j_0] \neq$ $b[i_0]$. The index j_0 exists by the assumption that *a* and *b* are distinct.

For the inductive step, suppose that *a* and *b* are distinct after performing that *m* swaps, and they differ at index *jm*. Consider their state after performing another swap S_{m+1} . If S_{m+1} does not swap the value at index j_m with another value, then after performing S_{m+1} , we still have $a[j_m] \neq b[j_m]$, as these values did not change. Thus in this case, we can take $j_{m+1} = j_m$. On the other hand, suppose S_{m+1} swaps the values of *a* at indices *j_m* and another index *i_m*. Then after the swap, we will have $a[i_m] \neq b[i_m]$. Thus we can take $j_{m+1} = i_m$ in this case. As *a* and *b* are distinct after applying S_{m+1} in either case, the claim follows by induction. \Box

Exercise 3. Suppose we apply RADIXSORT to an array *a* of size *n* that stores *n* distinct numerical values. Explain why in this scenario the running time of RADIXSORT is $\Omega(n \log n)$.

Solution. Recall that the running time of RADIXSORT is Θ(*Bn*), where *B* is the number of bits used to represent each value. Thus, it suffices to show that $B = \Omega(\log n)$ in this scenario. The number of $\emph{distinct}$ values that can be represented with B bits is 2^B . Since *a* stores *n* distinct values, we have $2^B \ge n$. Taking the log base two of both sides of this expression gives $B \ge \log n$, which gives the desired result. \Box

Exercise 4. Suppose a function *T* satisfies the recursion relation

$$
T(n) = T(cn) + O(n) \quad \text{for some } c \text{ satisfying } \frac{1}{2} \le c < 1.
$$

for $n \ge 1$, and $T(1) = O(1)$. Argue that $T(n) = O(n)$. You may find the following fact useful: for any value of $a < 1$, we have

$$
\sum_{i=0}^{k} a^{i} = 1 + a + a^{2} + \dots + a^{k} = \frac{1 - a^{-k-1}}{1 - a} < \frac{1}{1 - a}.\tag{1}
$$

Solution. To start, it is helpful to rewrite the hypothesis as $T(n) \leq T(cn) + bn$ for some constant *b*. Since this formula holds for all *n*, we can apply the formula recursively:

$$
T(n) \leq T(cn) + bn
$$

\n
$$
\leq (T(c2n) + cbn) + bn
$$

\n
$$
= T(c2n) + (1 + c)bn
$$

\n
$$
\leq (T(c3n) + c2bn) + (1 + c)bn
$$

\n
$$
= T(c3n) + (1 + c + c2)bn.
$$

Continuing in this way, we find that after applying the recursive bound *k* times, we obtain

$$
T(n) \le T(c^k n) + b n \sum_{i=0}^k c^i.
$$
 (2)

More formally, we can prove () by induction.

In order to apply the base case, we should have $c^k n = 1$, or equivalently, $n = c^{-k}$. Taking the \log_c of both sides gives $k = -\log_c(n) = \log(n)/\log(1/c)$. Using $k = \log(n)/\log(1/c)$. Using this value of *k* and applying (1), we find that

$$
T(n) < T(0) + bn \frac{1}{1 - c} = O(n)
$$

which is the desired result.

 \Box