
Tutorial 4 Exercises

COMP526: Efficient Algorithms

28–29 October, 2024

Exercise 1. Starting from an empty binary search tree T , suppose the following ele-
ments are added in the specified order:

7,4,15,11,6,17,3,9,8.

(a) Draw the T after all of the insertions have been completed.

(b) Indicate the height of every vertex in the tree.

(c) Indicate on your picture all of the vertices that are not height balanced.

(d) Find a single rotation that can be performed to result in a height balanced tree,
and draw the state of the tree after performing the rotation, along with the new
heights of every vertex in the tree.

Exercise 2. Suppose we represent a binary (search) tree as the class BST, where each
vertex is represented by a NODE class as follows:

1: class NODE

2: NODE PARENT

3: NODE LEFTCHILD

4: NODE RIGHTCHILD

5: integer HEIGHT

6: KEY

7: end class
8: class BST
9: NODE root

10: procedure FIND(x) ▷

Return the NODE storing KEY x, or the
NODE at which the search fails if there
is no NODE with KEY = x.

11: u, v ← root
12: while v ̸=⊥ and x ̸= KEY(v) do

13: u ← v
14: if x < KEY(v) then
15: v ← LEFTCHILD(v)
16: else
17: v ← RIGHTCHILD(v)
18: end if
19: end while
20: if v ̸=⊥ then
21: return v
22: else
23: return u
24: end if
25: end procedure
26: end class

Write pseudocode implementing the following functions:

(a) UPDATEHEIGHT(v) that updates the height of NODE v in the tree, assuming its
children’s heights are correct.

1



(b) INSERT(x) that inserts a new element with KEY = x if x is not already stored in
the BST, and does nothing if x is already stored in the BST. Additionally, INSERT

should update the heights of all vertices that changed as a result of inserting x in
O(h) time, where h is the height of the tree. (Hint: use the output of FIND so that
you aren’t reproducing the code there!)

(c) ROTATELEFT(v) that performs left rotation at vertex v (as depicted below). What
is the running time of ROTATELEFT?

...

v

u

T1

T2 T3 =⇒ ROTATELEFT(v) =⇒

...

u

v

T1 T2

T3

Exercise 3. An array a of length n storing integer values is called bitonic if there is an
index b with 0 < b < n such that a is increasing for indices 0,1. . . ,b and decreasing for
indices b,b+1, . . . ,n−1. That is, if i < b, we have a[i ] < a[i +1] and if b ≤ i < n−1, then
a[i ] > a[i +1]. We say a is tritonic if there are indices b and c, with 0 < b < c < n −1
such that a is (1) increasing between indices 0 and b, (2) decreasing between indices b
and c, and (3) increasing between indices c and n −1.

(a) If a is bitonic of length n, explain how you can find b in time O(logn).

(b) (challenge) If a is tritonic, explain why finding b takes Ω(n) time in the worst
case.

Exercise 4. In lecture, we showed that building a binary heap containing n values can
be performed in O(n logn) time by simply adding elements to the heap (represented as
an array) using the BUBBLEUP procedure. Consider the following alternative HEAPIFY

method that turns an arbitrary array into a heap:

1: procedure HEAPIFY(a,n) ▷ a is an array of size n
2: h ← ⌈

log2 n
⌉

▷ h is the height of the tree representation of the heap
3: for ℓ= h −1,h −2, . . . ,0 do ▷ Iterate over levels of the tree representation of the

heap, from farthest from the root to closest to the root.
4: for i = 2ℓ−1,2ℓ, . . . ,2ℓ+1 −2 do ▷ Iterate over the vertices at level ℓ, i.e., the

vertices at distance ℓ from the root
5: TRICKLEDOWN(a, i )
6: end for
7: end for
8: end procedure

That is, HEAPIFY iterates over the heap elements from lowest level (farthest from
the root) to highest level (ending at the root) and calls TRICKLEDOWN on each of the
elements.

2



(a) Argue that after calling HEAPIFY(a), a is a binary heap (i.e., satisfies the heap
property).

(b) Argue that the running time of HEAPIFY(a) isΘ(n).

You may assume that TRICKLEDOWN(a, i ) obeys the following properties:

1. If TRICKLEDOWN(a, i ) is called from an index i corresponding to level ℓ in the
heap (i.e., i is at distance ℓ from the root), then it terminates after c ·(h−ℓ) oper-
ations.

2. If the the descendants of i ’s children satisfy the heap property, then after calling
TRICKLEDOWN(a, i ), i and its descendants satisfy the heap property as well.

Additionally, you may find the following equation useful:
∑∞

k=0
k

2k = 2.

3


