
Tutorial 4 Exercise Solutions

COMP526: Efficient Algorithms

28–29 October, 2024

Exercise 1. Starting from an empty binary search tree T , suppose the following ele-
ments are added in the specified order:

7,4,15,11,6,17,3,9,8,12.

(a) Draw the T after all of the insertions have been completed.

(b) Indicate the height of every vertex in the tree.

(c) Indicate on your picture all of the vertices that are not height balanced.

(d) Find a single rotation that can be performed to result in a height balanced tree,
and draw the state of the tree after performing the rotation, along with the new
heights of every vertex in the tree.

Solution. Here is the state of T after adding the elements. The heights are draw above
each vertex, and the unbalanced vertices are colored red.

7

4

4

1

3

0

6

0

15

3

11

2

9

1

8

0

12

0

17

0

We can perform a single left rotation at vertex 15 to fix the imbalance. The resulting
tree is shown below, with the new heights of each vertex labeled above them.

1

7

3

4

1

3

0

6

0

11

2

9

1

8

0

15

1

12

0

17

0

Exercise 2. Suppose we represent a binary (search) tree as the class BST, where each
vertex is represented by a NODE class as follows:

1: class NODE

2: NODE PARENT

3: NODE LEFTCHILD

4: NODE RIGHTCHILD

5: integer HEIGHT

6: KEY

7: end class
8: class BST
9: NODE root

10: procedure FIND(x) ▷

Return the NODE storing KEY x, or the
NODE at which the search fails if there
is no NODE with KEY = x.

11: u, v ← root
12: while v ̸=⊥ and x ̸= KEY(v) do

13: u ← v
14: if x < KEY(v) then
15: v ← LEFTCHILD(v)
16: else
17: v ← RIGHTCHILD(v)
18: end if
19: end while
20: if v ̸=⊥ then
21: return v
22: else
23: return u
24: end if
25: end procedure
26: end class

Write pseudocode implementing the following functions:

(a) UPDATEHEIGHT(v) that updates the height of NODE v in the tree, assuming its
children’s heights are correct.

(b) INSERT(x) that inserts a new element with KEY = x if x is not already stored in
the BST, and does nothing if x is already stored in the BST. Additionally, INSERT

should update the heights of all vertices that changed as a result of inserting x in
O(h) time, where h is the height of the tree. (Hint: use the output of FIND so that
you aren’t reproducing the code there!)

(c) ROTATELEFT(v) that performs left rotation at vertex v (as depicted below). What
is the running time of ROTATELEFT?

2

...

v

u

T1

T2 T3 =⇒ ROTATELEFT(v) =⇒

...

u

v

T1 T2

T3

Solution. Here is pseudocode for UPDATEHEIGHT. Note that its running time is O(1):

1: procedure UPDATEHEIGHT(v)
2: h ← HEIGHT(LEFTCHILD(v))
3: h ← max{h, HEIGHT(RIGHTCHILD(v))}
4: HEIGHT(v) ← 1+h
5: end procedure

For INSERT(x), the following procedure uses the output of FIND to determine if x is
already stored in T . If not, it creates a new NODE v to store x. To update the heights, it
iterates over v ’s ancestors and updates their heights. Note that only ancestors of v may
need to update their height, so the procedure iterates over at most h such ancestors.

1: procedure INSERT(x)
2: u ← FIND(x)
3: if thenKEY(u) = x ▷ u will become x’s parent if x is not in the BST
4: return ▷ x is already in the BST
5: end if
6: end procedure
7: v ← new NODE

8: KEY(v) ← x, HEIGHT(v) ← 0
9: PARENT(v) ← u

10: if x < KEY(u) then ▷Determine if v should be right or left child of u
11: LEFTCHILD(u) ← v
12: else
13: RIGHTCHILD(u) ← u
14: end if
15: while u ̸=⊥ and HEIGHT(u) < 1+HEIGHT(v) do ▷Update heights fo v ’s ancestors
16: UPDATEHEIGHT(u)
17: v ← u
18: u ← PARENT(u)
19: end while

Finally, ROTATELEFT can be performed in O(1) time:

1: w1 ← LEFTCHILD(v)
2: w2 ← LEFTCHILD(u)
3: w3 ← RIGHTCHILD(u)
4: PARENT(u) ← PARENT(v)

5: PARENT(v) ← u
6: PARENT(w2) ← v
7: RIGHTCHILD(v) ← w2

3

Exercise 3. An array a of length n storing integer values is called bitonic if there is an
index b with 0 < b < n such that a is increasing for indices 0,1. . . ,b and decreasing for
indices b,b+1, . . . ,n−1. That is, if i < b, we have a[i] < a[i +1] and if b ≤ i < n−1, then
a[i] > a[i +1]. We say a is tritonic if there are indices b and c, with 0 < b < c < n −1
such that a is (1) increasing between indices 0 and b, (2) decreasing between indices b
and c, and (3) increasing between indices c and n −1.

(a) If a is bitonic of length n, explain how you can find b in time O(logn).

(b) (challenge) If a is tritonic, explain why finding b takes Ω(n) time in the worst
case.

Solution. For part (a), we can use binary search. Given any index i < n − 1, we can
determine if i < b by checking if a[i] < a[i +1]. The following variant of binary search
will do the trick:

1: procedure BINARYSEARCH

2: i ← 0,k ← n −1
3: while i < j do
4: j ←⌊(i +k)/2⌋
5: if a[j] > a[j +1] then ▷ This is precisely when k ≥ b
6: k ← j
7: else
8: i ← j
9: end if

10: end while
11: return i +1
12: end procedure

For part (b), consider the following tritonic arrays. For k = 0,1, . . . ,n −2, define the
array ak by

ak [i] =

i if k ̸= i , i +1

k +1 if i = k

k if i = k +1

That is, each ak consists of the the elements 0,1, . . . ,n−1 in sorted order, except values
k and k + 1 are swapped. Notice that any two arrays ak and aℓ differ at at most four
indices. Notice that ak is tritonic with b = k and c = k +1.

Now consider any algorithm A that finds the index b = k for any tritonic array a. We
argue by contradiction that A must read at least Ω(n) values of a in the worst case. To
this end, suppose that A reads fewer than n/2−2 values of a for all input. Consider the
process of constructing an array a in response to A’s accesses to a as follows: whenever
A accesses a[i], we set the value a[i] ← i . Since A used fewer than n/2−2 values, there
are still n/2+ 2 values that A never read before producing its output. Among these
unread values, there are two distinct indices i and j such that A did not the values
a[i], a[i +1], a[j], or a[j +1]. Therefore, both ai and a j are consistent with the accesses
made by A. If A outputs b = i , then complete a ← a j so that A produces the wrong
output. On the other hand, if A outputs b ̸= i , then set a ← ai , so that A also produces

4

the incorrect output. Therefore, if A uses fewer than n/2− 2 accesses to a, it cannot
correctly find b. Thus, A must use at least n/2−1 =Ω(n) accesses to a.

Exercise 4. In lecture, we showed that building a binary heap containing n values can
be performed in O(n logn) time by simply adding elements to the heap (represented as
an array) using the BUBBLEUP procedure. Consider the following alternative HEAPIFY

method that turns an arbitrary array into a heap:

1: procedure HEAPIFY(a,n) ▷ a is an array of size n
2: h ← ⌈

log2 n
⌉

▷ h is the height of the tree representation of the heap
3: for ℓ= h −1,h −2, . . . ,0 do ▷ Iterate over levels of the tree representation of the

heap, from farthest from the root to closest to the root.
4: for i = 2ℓ−1,2ℓ, . . . ,2ℓ+1 −2 do ▷ Iterate over the vertices at level ℓ, i.e., the

vertices at distance ℓ from the root
5: TRICKLEDOWN(a, i)
6: end for
7: end for
8: end procedure

That is, HEAPIFY iterates over the heap elements from lowest level (farthest from
the root) to highest level (ending at the root) and calls TRICKLEDOWN on each of the
elements.

(a) Argue that after calling HEAPIFY(a), a is a binary heap (i.e., satisfies the heap
property).

(b) Argue that the running time of HEAPIFY(a) isΘ(n).

You may assume that TRICKLEDOWN(a, i) obeys the following properties:

1. If TRICKLEDOWN(a, i) is called from an index i corresponding to level ℓ in the
heap (i.e., i is at distance ℓ from the root), then it terminates after c ·(h−ℓ) oper-
ations.

2. If the the descendants of i ’s children satisfy the heap property, then after calling
TRICKLEDOWN(a, i), i and its descendants satisfy the heap property as well.

Additionally, you may find the following equation useful:
∑∞

k=0
k

2k = 2.

Solution. For part (a), we argue by induction that after iteration ℓ of the outer loop, the
heap property is satisfied for all values at levels ℓ′ ≥ ℓ. Before the first loop (i.e., ℓ= h)
this is satisfied because no vertex at level h has any children.

For the inductive step, we use property 2 of TRICKLEDOWN. Specifically, by the in-
ductive hypothesis, all of indices at levels ≥ ℓ satisfy the heap property. Therefore, after
calling TRICKLEDOWN(a, i) from an index i at level ℓ− 1, i and all of its descendants
satisfy the heap property as well.

Applying the conclusion at ℓ = 0, the entire array satisfies the heap property, as
desired.

For part (b), we appeal to property 1 of TRICKLEDOWN above. First observe that for
each level ℓ = 0,1, . . . ,h there are at most 2ℓ indices in level ℓ. Further, for each index

5

i at level ℓ, the running time t (i) of TRICKLEDOWN at index i is at most c · (h −ℓ). The
total running time is t = ∑n

i=1 t (i). We can break this sum up summing over the layers
of the heap:

t =
n−1∑
i=0

t (i)

≤
h∑

ℓ=0
2ℓ · c · (h −ℓ) (by property 1 of HEAPIFY)

= c2h
h∑

k=0

k

2k
rewriting the sum

< c2h
h∑

k=0

k

2k

≤ 2c2h = 2cn.

Therefore, the running time is 2cn = O(n). Since the procedure reads all values of a,
the running time isΩ(n) as well, so that the overall running time isΘ(n).

6

