
Tutorial 3 Exercise Solutions

COMP526: Efficient Algorithms

21–22 October, 2024

Exercise 1. Recall that a STACK is an ADT that supports the functions PUSH, POP, EMPTY,
and TOP. A QUEUE supports the methods ENQUEUE and DEQUEUE (among others).
Suppose you are given two STACK instances, A and B . How could you use A and B
to simulate the behavior of a QUEUE? That is, how can you implement ENQUEUE and
DEQUEUE using only A and B , and the associated STACK methods for A and B?

Solution. In the specification of both the STACK and QUEUE ADTs, the state of the ADT
is represented by a sequence S of elements stored in the ADT. In the case of a STACK,
both PUSH and POP operations modify the (right) end of S by either appending a new
element (PUSH) or removing the last element (POP). On the other hand, in the case of a
QUEUE, ENQUEUE prepends an element to S, while DEQUEUE removes the last element
from S. Since S could represent the state of either a STACK or a QUEUE, we just need
to figure out how to simulate ENQUEUE and DEQUEUE on S. For concreteness, we will
use STACK A to store the contents of the QUEUE between method calls, and use B as an
auxiliary STACK to help us perform the QUEUE operations.

The case of DEQUEUE is straightforward because POP and DEQUEUE are formally
the same: in both cases Sx 7→ S and the value x is returned. Thus, we can easily imple-
ment DEQUEUE as follows.

1: procedure DEQUEUE

2: return A.POP()
3: end procedure

The ENQUEUE(x) procedure requires a little more thought because we must access
the bottom of the STACK to prepend an element to S. The idea is to transfer the ele-
ments from A to B , then PUSH(x) to A, and transfer the elements from B back to A so
that x is on the bottom of A. This will have the same effect as ENQUEUE(x), as S 7→ xS.

1: procedure ENQUEUE(x)
2: while not A.EMPTY() do ▷ transfer elements from A to B
3: B.PUSH(A.POP())
4: end while
5: A.PUSH(x)
6: while not B.EMPTY() do ▷ transfer elements from B back to A
7: A.PUSH(B.POP())
8: end while
9: end procedure

1



You should verify for yourself that the contents of A remain in the correct order
after transferring the elements to B then back to A.

Exercise 2. STACKs and QUEUEs are limited in that in both cases, elements are only
added to one “side” of the sequence of elements, and elements are only removed from
one side. In the case of STACKs, all modifications affect only the top of the STACK. For
QUEUEs, elements are enqueued to the “back” and dequeued from the “front.” We can
generalize both ADTs to the DEQUE (pronounced “deck”) ADT that allows modifica-
tions (additions and removals) to both “ends” of the sequence of elements stored in
the ADT. Formally, we can represent a DEQUE as follows:

• The state of the DEQUE is a sequence S, initially S =∅

• APPEND(x) modifies S 7→ Sx

• APPENDLEFT(x) modifies S 7→ xS

• POP() modifies Sx 7→ S and returns x

• POPLEFT() modifies xS 7→ S and returns x

How could you implement a DEQUE with an array such that all operations can be per-
formed in O(1) time? How you determine if the DEQUE is full? (You may assume that
the size of the array is fixed so that we don’t need to worry about resizing.)

Solution. We can use the same ideas as our QUEUE implementation where we use a
circular array. That is, if the array has capacity n, we perform index arithmetic mod n,
so that index 0 is after index n −1. As with the QUEUE implementation, we keep track
of a head index and at tail index that refer to the elements at the “right” and “left” ends
of the DEQUE elements, respectively. Here is an implementation (that ignores resizing,
and issues with empty/full DEQUEs).

1: class ARRAYQUEUE

2: a ← new array, size n
3: head, tail,size ← 0
4: procedure APPEND(x)
5: size ← size+1
6: a[head] ← x
7: head ← head+1 mod n
8: end procedure
9: procedure APPENDLEFT(x)

10: size ← size+1
11: tail ← tail−1 mod n
12: a[tail] ← x

13: end procedure
14: procedure POP

15: size ← size−1
16: head ← head−1 mod n
17: return a[head]
18: end procedure
19: procedure POPLEFT

20: size ← size−1
21: tail ← tail+1 mod n
22: return a[tail−1 mod n]
23: end procedure
24: end class

Note that in the pseudocode above, the case head = tail occurs both when the
DEQUE is empty and when it is full (i.e., it stores n elements, where n is the size of
the array). Thus, in order to check if the DEQUE is full, we should check if size = n.

Exercise 3. In Lecture 05, we described the “bubble up” procedure for adding a new
element to a heap:

2



1: procedure INSERT(p)
2: v ← new vertex storing p
3: u ← first vertex with < 2 children
4: add v as u’s child
5: PARENT(v) ← u
6: while v is not the root and value(v) < value(u) do
7: SWAP(value(v),value(u))
8: v ← u
9: u ← PARENT(v)

10: end while
11: end procedure

Prove that the INSERT procedure is correct: That is, argue that if T was a heap before
calling INSERT(p), then T is a heap after calling T .

Solution. Recall that a heap T must satisfy two properties:

(A) T is a complete binary tree

(B) For every vertex u storing the value pu and child v storing the value pv , we have
pu ≤ pv .

Property (A) is guaranteed by the choice of where the vertex v is added to the tree. Thus,
we focus on establishing (B). To this end, we argue that the following loop invariant
holds:

loop invariant The only violation to Property (A) (if any) occurs at vertex v with u =
PARENT(v).

We argue this loop invariant by induction. The base case holds because T satisfied the
heap property before the insertion, and v (the new vertex) doesn’t have any children.
Thus, the only possible violation is between v and u = PARENT(v).

For the inductive step, suppose loop invariant holds after iteration i of the loop. If
v doesn’t violate (B) with PARENT(v), then the procedure terminates and we are done.
Suppose that v does violate (B) with its parent. Then in iteration i +1, the values of v
and u = PARENT(v) are swapped in line 7. After the swap, pu < pv , so there is no longer
a violation of (B) between v and u. Further, since pu is smaller than its previous value,
u cannot violate (B) with its other child. Since no other values in the heap change,
the only possible violation of (B) is between u and PARENT(u), which are updated to v
and u (respectively) in lines 8–9. Thus, the invariant holds also after iteration i +1, as
desired.

Finally, we note that the process terminates when either v is the root, or v no longer
violates (B) with its parent. Thus, the procedure results in a heap.

3


