Tutorial 2 Exercise Solutions

COMP526: Efficient Algorithms

14–15 October, 2024

Exercise 1. Consider the sequence of numbers $T(n)$ defined recursively by

$$
T(n) = \begin{cases} 3 & \text{if } n = 0; \\ T(n-1) + 4 & \text{if } n \ge 1. \end{cases}
$$

- (a) Compute the first 6 elements of $T(n)$, i.e., $T(0)$, $T(1)$, $T(2)$, $T(3)$, $T(4)$, and $T(5)$.
- (b) Make an educated guess about the general pattern that this sequence follows. Write this guess as a *closed form* for $T(n)$, i.e., a formula for $T(n)$ without recursive reference to *T* .
- (c) Now formally prove the correctness of your guess using mathematical induction.

Solution. (a) $T(0) = 3$, $T(1) = 7$, $T(2) = 11$, $T(3) = 15$, $T(4) = 19$, $T(5) = 23$.

(b) Here is a general approach to solve this type of problem. The idea is to insert the recursive definition while keeping *n* as a variable. Assume that *n* is large enough so that we can apply the second part of the definition of $T(n)$, namely $T(n) = T(n-1) + 4$. Iterating this process, we obtain

$$
T(n) = T(n-1) + 4
$$

= $(T(n-2) + 4) + 4$
= $T(n-2) + 2 \cdot 4$
= $(T(n-3) + 4) + 2 \cdot 4$
= $T(n-3) + 3 \cdot 4$.

After $i \leq n$ iterations, we thus obtain $T(n) = T(n-i) + i \cdot 4$. For $i = n$, this is $T(0) + 4n = 3 + 4n$ (from the first part of the definition).

So, our educated guess is $\forall n \in \mathbb{N}_0$: $T(n) = 4n + 3$.

(c) Now, we formally prove the correctness of this "guess" by induction. In the notation of the lecture notes, we have $P(n) \equiv T(n) = 4n + 3$.

Base case: We have to check $P(0)$, i.e., $T(0) = 3$. By the first part of the definition of *T* , this is indeed the case.

Inductive step: Now, we have to prove $\forall n \in \mathbb{N} : P(n) \implies P(n+1)$. Let *n* ∈ **N** be arbitrary, but fixed and assume *P*(*n*) is true. (*P*(*n*) is called the *inductive hypothesis.*) We have to prove $P(n+1)$, i.e., $T(n+1) = 4(n+1)+3$. By the second part of the definition of *T*, $T(n+1) = T(n) + 4$, and using the inductive hypothesis, this is $T(n+1) = (4n+3) + 4 = 4(n+1) + 3$, which is what we had to prove.

Now the claim follows for all *n* by the induction principle.

 \Box

Exercise 2. Recall that given positive integers *n* and *k*, the *modulo operation n* mod *k* computes the remainder when *n* is divided by *k*. That is, $r = n \text{ mod } k$ if and only if $n = q \cdot k + r$ for some integer q and $0 \le r \le k$. Consider the following MoD procedure that computes *n* mod *k*.

1: **procedure** $\text{MOD}(n,k)$

- 2: $t \leftarrow n$ 3: **while** $t \geq k$ **do** $4 \cdot \qquad \qquad t \leftarrow t - k$ 5: **end while** 6: **return** *t*
- 7: **end procedure**
- (a) Argue that $MOD(n, k)$ correctly computes *n* mod *k*. (Hint: what is a loop invariant maintained after each iteration of the loop?)
- (b) Express the running time of this procedure as a function of *n* and *k* using big-O notation.
- *Solution.* (a) Consider the following loop invariant: after each iteration of the loop, $t \mod k = n \mod k$. We argue that this invariant holds by induction:
	- *Base case:* Before the first iteration, we have $t = n$, so the invariant is trivially true.
	- *Inductive step:* Assume that the invariant holds at the beginning of the *i*th iteration, i.e., t_i mod $k = n$ mod k . After the *i*th iteration, we have $t_{i+1} = t_i - k$. By the inductive hypothesis, we thus have t_{i+1} mod $k = (t_i - k)$ mod $k =$ (*n* mod $k - k$) mod $k = n$ mod k . Thus the invariant is established for the $(i + 1)$ st iteration.

When the loop terminates, we have $t < k$, so $t \mod k = t$. Therefore, by the invariant, we have *n* mod $k = t$. Thus the procedure correctly computes *n* mod *k*.

(b) To analyze the running time of MOD We will count the number of executed (pseudocode) instructions. First of all, outside of the loop, there are only 2 operations; they are executed exactly once. Each iteration of the loop adds 2 more instruction (the body and checking the condition).

Consider the value of *t* during the execution of the loop. *T* is originally equal to *n*, and the loop terminates when *t* stores a value between 0 and *k* − 1. Each iteration reduces *t* by *k*, so we will have exactly $\frac{n}{k}$ $\frac{n}{k}$ iterations.

The overall number of instructions for $\text{MOD}(n, k)$ is therefore $2+2\left\lfloor \frac{n}{k} \right\rfloor$ $\left(\frac{n}{k}\right] = \Theta\left(\frac{n}{k}\right)$ $\frac{n}{k}$.