
Tutorial 2 Exercise Solutions

COMP526: Efficient Algorithms

14–15 October, 2024

Exercise 1. Consider the sequence of numbers T (n) defined recursively by

T (n) =
{

3 if n = 0;

T (n −1)+4 if n ≥ 1.

(a) Compute the first 6 elements of T (n), i.e., T (0), T (1), T (2), T (3), T (4), and T (5).

(b) Make an educated guess about the general pattern that this sequence follows.
Write this guess as a closed form for T (n), i.e., a formula for T (n) without recur-
sive reference to T .

(c) Now formally prove the correctness of your guess using mathematical induction.

Solution. (a) T (0) = 3, T (1) = 7, T (2) = 11, T (3) = 15, T (4) = 19, T (5) = 23.

(b) Here is a general approach to solve this type of problem. The idea is to insert
the recursive definition while keeping n as a variable. Assume that n is large
enough so that we can apply the second part of the definition of T (n), namely
T (n) = T (n −1)+4. Iterating this process, we obtain

T (n) = T (n −1)+4

= (T (n −2)+4)+4

= T (n −2)+2 ·4

= (T (n −3)+4)+2 ·4

= T (n −3)+3 ·4.

After i ≤ n iterations, we thus obtain T (n) = T (n − i ) + i · 4. For i = n, this is
T (0)+4n = 3+4n (from the first part of the definition).

So, our educated guess is ∀n ∈ N0 : T (n) = 4n +3.

(c) Now, we formally prove the correctness of this “guess” by induction. In the nota-
tion of the lecture notes, we have P (n) ≡ T (n) = 4n +3.

Base case: We have to check P (0), i.e., T (0) = 3. By the first part of the definition
of T , this is indeed the case.

1



Inductive step: Now, we have to prove ∀n ∈ N : P (n) =⇒ P (n +1).

Let n ∈ N be arbitrary, but fixed and assume P (n) is true. (P (n) is called the
inductive hypothesis.) We have to prove P (n+1), i.e., T (n+1) = 4(n+1)+3.

By the second part of the definition of T , T (n +1) = T (n)+4, and using the
inductive hypothesis, this is T (n + 1) = (4n + 3)+ 4 = 4(n + 1)+ 3, which is
what we had to prove.

Now the claim follows for all n by the induction principle.

Exercise 2. Recall that given positive integers n and k, the modulo operation n mod k
computes the remainder when n is divided by k. That is, r = n mod k if and only if
n = q ·k + r for some integer q and 0 ≤ r < k. Consider the following MOD procedure
that computes n mod k.

1: procedure MOD(n,k)
2: t ← n
3: while t ≥ k do
4: t ← t −k
5: end while
6: return t
7: end procedure

(a) Argue that MOD(n,k) correctly computes n mod k. (Hint: what is a loop invari-
ant maintained after each iteration of the loop?)

(b) Express the running time of this procedure as a function of n and k using big-O
notation.

Solution. (a) Consider the following loop invariant: after each iteration of the loop,
t mod k = n mod k. We argue that this invariant holds by induction:

Base case: Before the first iteration, we have t = n, so the invariant is trivially
true.

Inductive step: Assume that the invariant holds at the beginning of the i th itera-
tion, i.e., ti mod k = n mod k. After the i th iteration, we have ti+1 = ti −k.
By the inductive hypothesis, we thus have ti+1 mod k = (ti − k) mod k =
(n mod k −k) mod k = n mod k. Thus the invariant is established for the
(i +1)st iteration.

When the loop terminates, we have t < k, so t mod k = t . Therefore, by the in-
variant, we have n mod k = t . Thus the procedure correctly computes n mod k.

(b) To analyze the running time of MOD We will count the number of executed (pseu-
docode) instructions. First of all, outside of the loop, there are only 2 operations;
they are executed exactly once. Each iteration of the loop adds 2 more instruc-
tion (the body and checking the condition).

2



Consider the value of t during the execution of the loop. T is originally equal
to n, and the loop terminates when t stores a value between 0 and k −1. Each
iteration reduces t by k, so we will have exactly

⌊n
k

⌋
iterations.

The overall number of instructions for MOD(n,k) is therefore 2+2
⌊n

k

⌋=Θ(n
k

)
.

3


