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Announcements

1. Today is the final lecture!!!

2. Final exam revision materials soon:

• Practice exam questions

• Solutions

3. Attendance Code:
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Meeting Goals
1. Finish discussion of text indexing

• Recap of suffix trees

• Introduce suffix arrays

• Introduce LCP arrays

• Discuss efficient computation of suffix and LCP arrays

2. Final exam overview
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Text Indexing



From Last Time
Text Indexing Problem. Given a text T [0..n), preprocess T so that

queries to T can be performed efficiently

• Pattern matching for any P[0..m)

• Approximate matching

• Matching with wildcards

• Find longest repeated substring

• . . .

Remarkably Useful Tool. Suffix Trees!

• Form compact trie of all suffixes of T : T [0..n], T [1..n],

T [2..n],. . . ,T [n..n]

• Given the suffix tree T , all of the examples above can be

computed efficiently!

Question. Can we compute T from T efficiently? Today: Yes!
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Banana Example
Example. T = banana$.
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Suffix Trees and Sorting Suffixes
Question. Consider the pre-order traversal of the leaves in the suffix

tree. In what order are the corresponding suffixes?

Observation. The suffixes are sorted in lexicographical order.

• This is already sufficient to perform string matching with pattern

P[0..m) reasonably efficiently

• O(m logn) time

• Not much worse than O(m) for string matching with suffix array

• Still want to do better

Question. Can we perform suffix tree-type computations without

computing the full suffix array?

Definition. The suffix array, L[0..n] of T [0..n] is the array of indices of

the suffixes of T when the suffixes are sorted in lexicographic order.

• This is the same as pre-order traversal of the leaves of T .
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Suffix Array Example
Example. Compute the suffix array L for T = abbabbaa$.

abbabbaa$
bbabbaa$
babbaa$
abbaa$
bbaa$
baa$
aa$
a$
$

$
a$
aa$
abbaa$
abbabbaa$
baa$
babbaa$
bbaa$
bbabbaa$

8
7
6
3
0
5
2
4
1

So. L = [8,7,6,3,0,5,2,4,1]
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Is Too Much Lost?
Question. Is the suffix array L (together with T) sufficient to perform

queries efficiently?

• Somewhat for string matching!

• Maybe not for longest repeated substring

• required knowledge of internal structure of the suffix tree T

What additional structure of T might we need to store?

Sufficient Tree Structure. Consider the suffix tree T for a text T [0..n].

The longest common prefix array LCP[1..n] stores at index i the length

of the longest common prefix of T [L[i]..n] and T [L[i→1]..n]

9 / 22



LCP Array Example
Example. Compute the LCP array for the text T = banana$.
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Sufficient Information
Fact. Given T [0..n], L, and LCP, it is possible to compute T in time

ω(n).

Illustration. Construct T for T = banana$ from L and LCP:

• T = banana$
• L = [6,5,3,1,0,4,2]

• LCP = [0,1,3,0,0,2]

Consequence. In order to compute T in O(n) time, it suffices to

compute L and LCP in O(n) time.
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One More Definition
Definition. Given a suffix array L, the inverse suffix array or rank

array R is defined by L[r] = i ↑↓ R[j] = r.

• R is the inverse permutation of L

• R[i] gives the (sorted) rank of the suffix T [i..n]

• R and L can be computed from one another in linear time

• Example: L = [6,5,3,1,0,4,2]

• To compute L, it suffices to compute R (efficiently)
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Computing R, An Overview
Goal. Given T [0..n], compute R[0..n] where R[i] is the sorted rank of

T [i..n] among all prefixes of T .

1. Compute a rank array R1,2 for Ti = T [i..n] with i not divisible by 3

recursively.

2. Use R1,2 to find the rank array R3 for suffix Ti with i divisible by 3

3. Merge R1,2 and R0
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1. Compute a rank array R1,2 for Ti = T [i..n] with i not divisible by 3

recursively.
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Goal. Given T [0..n], compute R[0..n] where R[i] is the sorted rank of
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1. Compute a rank array R1,2 for Ti = T [i..n] with i not divisible by 3

recursively.

2. Use R1,2 to find the rank array R3 for suffix Ti with i divisible by 3
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Computing R, An Overview
Goal. Given T [0..n], compute R[0..n] where R[i] is the sorted rank of

T [i..n] among all prefixes of T .

A Non-obvious Approach.

1. Compute a rank array R1,2 for Ti = T [i..n] with i not divisible by 3

recursively.

2. Use R1,2 to find the rank array R3 for suffix Ti with i divisible by 3

3. Merge R1,2 and R0

Analysis

• Can perform steps 2 and 3 in linear time

• Overall running time is

n+ 2

3
n+

(
2

3

)
2

n+·· ·+1 ↔ n

∑

i↗0

(
2

3

)
i

= 3n =ω(n).
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Computing LCP, An Overview
Goal. Compute LCP[1..n] where LCP[i] is the length of the longest

common prefix of TL[i] and TL[i→1].

• Compute L and R (in O(n)) time

• Process prefixes in descending length order i = 0,1,2, . . . ,n→1

• Find the rank r of Ti

• Find LCP of Ti and Tj with j = L[r→1]

• must be at least LCP corresponding Ti→1 minus 1
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Concluding Thoughts
We have shown:

• Suffix trees can be used to preform many queries to T efficiently

• We can compute the following in linear time:

• the suffix array L

• the inverse suffix array (rank array) R

• the LCP array LCP

• From these, we can compute T in time O(n)

• These are surprising (and relatively recent) developments!
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Final Exam



From Day 1: Goals & Content
Module Goals:

• build / enhance your toolbox of algorithmic methods and techniques

=↓ focus on practical methods

• enable you to reason about and communicate algorithmic solutions

=↓ level of abstraction, proofs, mathematical analysis, vocabulary

• enable you to apply, combine and extend methods

Units:

1. Module Overview & Proof

Techniques

2. Machines & Models

3. Fundamental Data Structures

4. Efficient Sorting

5. String Matching

6. Compression

7. Error-Correcting Codes

8. Parallel Algorithms

9. Text indexing

10. Streaming Algorithms

Exam Purpose. Determine the extent to which you achieved these

goals.
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Exam Format
The Basics.

• Written Exam, Closed Book

• 2 1/2 hours to complete (invigilated)

• no outside resources: just you, pencil, and paper

• 100 marks total

• 5 multi-part questions, each worth 25 marks

• Total mark is sum of 4 highest marks

• only need to answer 4 of 5 questions

• Content from all module units

• Focus on conceptual and computational aspects of module

content
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Question Types
1. Definitional: concisely define a concept from class together with

examples or applications of the concept

• Example: Define the compression ratio of an encoding scheme and

describe a scenario in which one of the compression algorithms

from lecture gives a small compression ratio.

2. Factual: recall a pertinent fact about a particular concept or

algorithm from lecture.

3. Computational: apply a known algorithm to a new input

4. Critical Analysis: explain/analyze a concept and how it relates to

another concept

5. Transfer Task: apply concepts or techniques from lecture to solve

a novel problem.
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another concept

• Example: Consider the task of sorting an array of size n containing

numbers from the range 1 to c for some constant c. Explain why

the O(n) running time of COUNTINGSORT does not contradict the

ε(n logn) lower bound we proved for comparison based sorting
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3. Computational: apply a known algorithm to a new input

4. Critical Analysis: explain/analyze a concept and how it relates to

another concept

5. Transfer Task: apply concepts or techniques from lecture to solve

a novel problem.

• Example: Two strings S1[0..n) and S2[0..n) are anagrams if they are

rearrangements of precisely the same letters (with multiplicity).

Describe a procedure that determines if two strings are anagrams

in time O(n logn).
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Question Types

1. Definitional: concisely define a concept from class together with

examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or

algorithm from lecture.

3. Computational: apply a known algorithm to a new input

4. Critical Analysis: explain/analyze a concept and how it relates to

another concept

5. Transfer Task: apply concepts or techniques from lecture to solve

a novel problem.

Assessment.

• Pass (50–60). Answer types 1–3 with only minor errors.

• Merit (60–70). Answer 1–3, and show some insight on 4–5.

• Distinction (70+). Answer 1–3 with significant progress on 4–5.
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Forthcoming
Lecture Review Materials

• Exhaustive list of topics

• Example questions

• Model solutions
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Forthcoming
Lecture Review Materials

• Exhaustive list of topics

• Example questions

• Model solutions

PollEverywhere

In what format do you find example

solutions most helpful?

• thorough written (typeset) solution

• a video walking through solutions

(handwritten)

• either one is fine

pollev.com/comp526
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Forthcoming
Lecture Review Materials

• Exhaustive list of topics

• Example questions

• Model solutions

Marking

• Programming Assignment 1

• Programming Assignment 2
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Thank You!!!



Scratch Notes
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