1	H.							I.	I.				I																												
- E	1			I.			L										J	Ľ,																			l				
0000000		000	0.0	00	0	00	00	00	0	0	0 0 10 70	0	0	00	1 D 5 36	0	0 (0 41	0 0 42 40) () 5 46	0 0 47 48	00	0 51	il O 52 53	00	00	0	U O	0.0	0	00	0.0		00	00	0	74.7	0) 0
1 11111	111	11	1	1	1.1	1.1	1	1	11	11	1.1	1		1	1	1.1	1	11	1 1	1	11	1.1	1 1	11	11	1 1	11	1	11	11	1	11	1 1	1	1 1	11	1	1 1	1	1 1	111
2 2 🛛 2 2 2 2 2	2 2 2	2 2 2	2 2	2	22	22	2 2	2 2	2	2 2	22	2 2	2 2	2 2		2 2	2	2 2	2 2	2	22	22	2 2	2 2	22	2 2	2 2	2	22	2 2	2	22	2 2	2	22	2 2	2 2	2 2	2 2	2 2	2 2 2
3333333	333	3 3 3	33	33		33	3-3	33	3	3	33	3 3	33	33	3	3	3	33	33	3	33	33	3 3	33	33	3 3	3 3	3	33	33	3	33	3 3	3	33	3 3	3 3	3 3	3	33	3 🛛 3
444444	444	444	4 4	44	44	44	44	44	4 4	44	44	4 4	4 4	4 4	4	4	4	4 4	4 4	4	44	44	4 4	4 4	44	4 4	4 4	4	44	44	4	44	4 4	4	44	4 4	4	4	4	4	4 4
5555555	555	5 5	5	55	5 5	5	5 5	5	5 5	i 5	5		55	5	i 5	55	5	5	5 5	i 5 !	55	5 5	5 5	5 5	55	5 5	5 5	5	55	5 5	5	55	5 5	5	55	5 5	i 5	5 5	5	5 5	55
6666666	6 6	6	666	66	66	66	6,6	6 6	6 6	5 6	66	6 (6 6	6 6	6 6	66	6	66	6 6	6 6	66	66	6 8	66	66	6 6	66	6	66	5.6	6	66	6 6	6	66	5.6	5 6	6 8	6	5 6	566
111111	111	773	77	77		7		77	7 1	11	7 7	7	77	77	7	11	I.	11		7	11	1 1	7	1 1	77	7 7	7 1		7 7	17	7	7 7		7				7	7		177

Lecture 19: Text Indexing I

COMP526: Efficient Algorithms

Updated: December 5, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Quiz 07 on Error Correcting Codes
 - Complete by 11:59pm, Friday 06 November
- 2. Grading is slow (sorry)
 - Programming assignment 1 grades next week
- 3. Last lectures:
 - Text indexing (Today and next Tuesday)
 - Final review (next Thursday)
- 4. Attendance Code:

Meeting Goals

- 1. Introduce and analyze Parallel MergeSort
- 2. Introduce the text indexing problem
- 3. Define the trie data structure
- 4. Define suffix trees
- 5. Describe applications of suffix trees

Parallel MergeSort

Last Time

Parallel Algorithms!

- PRAM model
 - Unlimited parallel processing elements (PEs)
- Brent's Theorem: span *T* and work *W* with unlimited PEs
 - \implies span O(T + W/p) and work O(W) with p PEs
- Parallel string matching with span T = O(m) and work W = O(n)
- Sorting networks
 - span $T = O(\log^2 n)$ and work $W = O(n\log^2 n)$
 - limited to specialized hardware and/or small arrays

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to parallelism:

- 1. Divide problem into sub-tasks
- 2. Solve the subtasks
- 3. Merge solutions of the subtasks

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to parallelism:

- 1. Divide problem into sub-tasks
- 2. Solve the subtasks (independently)
 - Parallelize these!
- 3. Merge solutions of the subtasks

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to parallelism:

- 1. Divide problem into sub-tasks
- 2. Solve the subtasks (independently)
 - Parallelize these!
- 3. Merge solutions of the subtasks (...?)
 - How to parallelize this?

Parallel MergeSort?

Revisited: MERGESORT

1: **procedure** MERGESORT(A, i, k) if i < k then 2: $j \leftarrow \lfloor (i+k)/2 \rfloor$ 3: MERGESORT(A, i, j)4: MERGESORT(A, j + 1, k) 5: $B \leftarrow \text{COPY}(A, i, j)$ 6: $C \leftarrow \text{COPY}(A, j+1, k)$ 7: MERGE(B, C, A, i)8: end if 9: 10: end procedure

Parallel MergeSort?

PollEverywhere

What is the span of MergeSort with parallel recursive calls and sequential merges?

pollev.com/comp526

- 1: **procedure** MERGESORT(*A*, *i*, *k*)
- 2: **if** *i* < *k* **then**
- 3: $j \leftarrow \lfloor (i+k)/2 \rfloor$
- 4: MERGESORT(A, i, j)
- 5: MERGESORT(A, j+1, k)
- 6: $B \leftarrow \text{COPY}(A, i, j)$
- 7: $C \leftarrow \text{COPY}(A, j+1, k)$
- 8: MERGE(*B*, *C*, *A*, *i*)
- 9: **end if**
- 10: end procedure

Question. How can we parallelize merges?

Question. How can we parallelize merges?

- For each *x*, find the final index of *x*
- How do we find this?

Question. How can we parallelize merges?

- For each *x*, find the final index of *x*
- How do we find this?
- index = # elements $\leq x$
 - # in x's sub-array
 - # in other sub-array
- How to compute these?

Question. How can we parallelize merges?

- For each *x*, find the final index of *x*
- How do we find this?
- index = # elements $\leq x$
 - *#* in *x*'s sub-array
 - # in other sub-array
- How to compute these?

Idea.

• In x's own sub-array, just use x's index!

Question. How can we parallelize merges?

- For each *x*, find the final index of *x*
- How do we find this?
- index = # elements $\leq x$
 - *#* in *x*'s sub-array
 - # in other sub-array
- How to compute these?

Idea.

- In *x*'s own sub-array, just use *x*'s index!
- For the other sub-array, use binary search!

Question. How can we parallelize merges?

- For each *x*, find the final index of *x*
- How do we find this?
- index = # elements $\leq x$
 - *#* in *x*'s sub-array
 - # in other sub-array
- How to compute these?

Idea.

- In *x*'s own sub-array, just use *x*'s index!
- For the other sub-array, use binary search!
- **Parallelize:** do each *x* in parallel!

- 1: **procedure** PARALLELMERGE(*A*[*l..m*), *A*[*m..r*), *B*)
- 2: **for** $i = l, \dots, m-1$ **in parallel do**
- 3: $k \leftarrow (i l) + \text{BINARYSEARCH}(A[m..r), A[i])$
- 4: $B[k] \leftarrow A[i]$
- 5: **end for**
- 6: **for** j = m, m+1, ..., r-1 **in parallel do**
- 7: $k \leftarrow \text{BINARYSEARCH}(A[l..m), A[j])$
- 8: $B[k] \leftarrow A[j]$
- 9: end for
- 10: end procedure

- 1: **procedure** PARALLELMERGE(*A*[*l..m*), *A*[*m..r*), *B*)
- 2: **for** $i = l, \dots, m-1$ **in parallel do**
- 3: $k \leftarrow (i l) + \text{BINARYSEARCH}(A[m..r), A[i])$
- 4: $B[k] \leftarrow A[i]$
- 5: **end for**
- 6: **for** j = m, m+1, ..., r-1 **in parallel do**
- 7: $k \leftarrow \text{BINARYSEARCH}(A[l..m), A[j])$
- 8: $B[k] \leftarrow A[j]$
- 9: end for

10: end procedure

Questions.

• What is the **span** of PARALLELMERGE?

- 1: **procedure** PARALLELMERGE(*A*[*l..m*), *A*[*m..r*), *B*)
- 2: **for** $i = l, \dots, m-1$ **in parallel do**
- 3: $k \leftarrow (i l) + \text{BINARYSEARCH}(A[m..r), A[i])$
- 4: $B[k] \leftarrow A[i]$
- 5: end for
- 6: **for** j = m, m+1, ..., r-1 **in parallel do**
- 7: $k \leftarrow \text{BINARYSEARCH}(A[l..m), A[j])$
- 8: $B[k] \leftarrow A[j]$
- 9: end for

10: end procedure

Questions.

- What is the **span** of PARALLELMERGE?
 - Θ(log *n*)
- What is the **work** of PARALLELMERGE?

- 1: **procedure** PARALLELMERGE(*A*[*l..m*), *A*[*m..r*), *B*)
- 2: **for** $i = l, \dots, m-1$ **in parallel do**
- 3: $k \leftarrow (i l) + \text{BINARYSEARCH}(A[m..r), A[i])$
- 4: $B[k] \leftarrow A[i]$
- 5: **end for**
- 6: **for** j = m, m+1, ..., r-1 **in parallel do**
- 7: $k \leftarrow \text{BINARYSEARCH}(A[l..m), A[j])$
- 8: $B[k] \leftarrow A[j]$
- 9: end for

10: end procedure

Questions.

- What is the **span** of PARALLELMERGE?
 - Θ(log *n*)
- What is the **work** of PARALLELMERGE?
 - $\Theta(n\log n)$

Overall Procedure

- 1. Split (sub)array in half
- 2. Parallel recursive MergeSorts
- 3. PARALLELMERGE sorted halves

Overall Procedure

- 1. Split (sub)array in half
- 2. Parallel recursive MergeSorts
- 3. PARALLELMERGE sorted halves

Span Analysis

- Merge has span $\Theta(\log n)$
- Depth of recursion tree is $\Theta(\log n)$
- Total time: $\Theta(\log^2 n)$

Overall Procedure

- 1. Split (sub)array in half
- 2. Parallel recursive MergeSorts
- 3. PARALLELMERGE sorted halves

Span Analysis

- Merge has span $\Theta(\log n)$
- Depth of recursion tree is $\Theta(\log n)$
- Total time: $\Theta(\log^2 n)$

Work Analysis

- Merge has work $\Theta(n \log n)$
- Summing over recursive calls gives $\Theta(n\log^2 n)$

Overall Procedure

- 1. Split (sub)array in half
- 2. Parallel recursive MergeSorts
- 3. PARALLELMERGE sorted halves

Span Analysis

- Merge has span $\Theta(\log n)$
- Depth of recursion tree is $\Theta(\log n)$
- Total time: $\Theta(\log^2 n)$

Work Analysis

- Merge has work $\Theta(n \log n)$
- Summing over recursive calls gives $\Theta(n\log^2 n)$

Improvements. Merge can be improved to $\Theta(n)$ work! (but it's complicated)

Concluding Thoughts

Parallelism is Necessary

- Computer hardware is naturally parallel
 - sequential computing is an illusion!

Concluding Thoughts

Parallelism is Necessary

- Computer hardware is naturally parallel
 - sequential computing is an illusion!

Parallelism is Powerful

• Recent explosion in computing power is due to parallelism!

Concluding Thoughts

Parallelism is Necessary

- Computer hardware is naturally parallel
 - sequential computing is an illusion!

Parallelism is Powerful

• Recent explosion in computing power is due to parallelism!

Parallelism is Subtle

- Reasoning about parallel programs is hard
- Writing correct parallel programs is hard
- Idealized models abstract away many challenges
 - no perfect synchrony?
 - tolerate faults?

Previously: String Matching.

- Given a text T[0..n) and a pattern P[0..m), determine if/where T contains P
- Focus on *one shot* complexity:
 - how long to search *T* for a single pattern *P*

Previously: String Matching.

- Given a text T[0..n) and a pattern P[0..m), determine if/where T contains P
- Focus on *one shot* complexity:
 - how long to search *T* for a single pattern *P*

A Variation. The text *T* is *fixed*, but we may wish to search *T* for many different (initially) unknown patterns $P_1, P_2, ...$

- $\Theta(n)$ may be much too much to pay for *each* search
- Applications:
 - web search engines
 - online dictionaries/encyclopedias
 - DNA/RNA databases
 - searching any collection of text documents

Previously: String Matching.

- Given a text T[0..n) and a pattern P[0..m), determine if/where T contains P
- Focus on *one shot* complexity:
 - how long to search *T* for a single pattern *P*

A Variation. The text *T* is *fixed*, but we may wish to search *T* for many different (initially) unknown patterns $P_1, P_2, ...$

- $\Theta(n)$ may be much too much to pay for *each* search
- Applications:
 - web search engines
 - online dictionaries/encyclopedias
 - DNA/RNA databases
 - searching any collection of text documents

An Alternative Approach. *Preprocess* the text *T* to make the searches more efficient

- Pay for preprocessing upfront
- Each query can be *much* more efficient.

Example Problem. Given a text *T* of *words*, implement an *index* of the occurrences of that word.

- Like an index of a textbook
- Only store known words (e.g., whitespace/punctuation separated substrings)

Example Problem. Given a text *T* of *words*, implement an *index* of the occurrences of that word.

- Like an index of a textbook
- Only store known words (e.g., whitespace/punctuation separated substrings)

Goal. Implement an efficient **map** from (possible) keywords P to index of first occurrence (or all occurrences) of P in T (if any)

Example Problem. Given a text *T* of *words*, implement an *index* of the occurrences of that word.

- Like an index of a textbook
- Only store known words (e.g., whitespace/punctuation separated substrings)

Goal. Implement an efficient **map** from (possible) keywords P to index of first occurrence (or all occurrences) of P in T (if any)

- "Easier" than general string matching:
 - Possible (positive) queries are not arbitrary
 - must be a word in the text
 - Keywords are already given (implicitly) in the text

Example Problem. Given a text *T* of *words*, implement an *index* of the occurrences of that word.

- Like an index of a textbook
- Only store known words (e.g., whitespace/punctuation separated substrings)

Goal. Implement an efficient **map** from (possible) keywords P to index of first occurrence (or all occurrences) of P in T (if any)

- "Easier" than general string matching:
 - Possible (positive) queries are not arbitrary
 - must be a word in the text
 - Keywords are already given (implicitly) in the text

Question. How can we implement such a map *efficiently*?

The Trie Data Structure

Idea. Store words in a tree

- · Each leaf represents a possible word in the text
- Each internal node represents *prefix* of a word in the text
 - path from root to leaf stores letters in the leaf word
- Append a terminating character to each word to make the tree a **prefix tree**
The Trie Data Structure

Idea. Store words in a tree

- · Each leaf represents a possible word in the text
- Each internal node represents *prefix* of a word in the text
 - path from root to leaf stores letters in the leaf word
- Append a terminating character to each word to make the tree a **prefix tree**

Example: {aa\$, aaab\$, abaab\$, abb\$, abbab\$, bba\$, bbbb\$}

Question. Given a pattern *P* and a **trie** for the text *T*, how do we determine if *T* contains the pattern *P*?

Question. Given a pattern *P* and a **trie** for the text *T*, how do we determine if *T* contains the pattern *P*?

Procedure. Given the pattern *P*[0..*m*):

- 1. Start at the root of the trie
- 2. Read each character of *P*, and follow the corresponding edge (if any)
- 3. If a leaf is reached storing *P* match is found!
- 4. If no corresponding edge found or end at an internal node, no mach is found.

Question. Given a pattern *P* and a **trie** for the text *T*, how do we determine if *T* contains the pattern *P*?

Procedure. Given the pattern *P*[0..*m*):

- 1. Start at the root of the trie
- 2. Read each character of *P*, and follow the corresponding edge (if any)
- 3. If a leaf is reached storing *P* match is found!
- 4. If no corresponding edge found or end at an internal node, no mach is found.

PollEverywhere

What is the running time of searching a trie?

pollev.com/comp526

Question. Given a pattern *P* and a **trie** for the text *T*, how do we determine if *T* contains the pattern *P*?

Procedure. Given the pattern *P*[0..*m*):

- 1. Start at the root of the trie
- 2. Read each character of *P*, and follow the corresponding edge (if any)
- 3. If a leaf is reached storing *P* match is found!
- 4. If no corresponding edge found or end at an internal node, no mach is found.

Remarkable fact. The time to search a trie depends only on the length of *P*, not the size of *T*!

• Also: the trie can be computed efficiently from *T* (in *O*(*n*) time).

Compact Tries

Observation. Tries are potentially wasteful!

- Can have long paths with no branching
- Storing these paths is inefficient

Compact Tries

Observation. Tries are potentially wasteful!

- Can have long paths with no branching
- *Storing* these paths is inefficient

Idea. Compress paths without branches!

- Replace a path of **unary** (single-child) nodes with a single edge
- Label edge with the *first* character of the corresponding path
- Label each *vertex* with the index of the next character

Words, Trie, Compact Trie

Example: {aa\$, aaab\$, abaab\$, abb\$, abbab\$, bba\$, bbbb\$}

Question. How do we search a *compact* trie?

Question. How do we search a *compact* trie?

- 1. Start at the root of the compact trie
- 2. At node labeled i, follow edge labeled P[i], if any
 - if no such edge exists, search failed
- 3. If leaf not reached, search failed
- 4. If leaf reached, check that P =leaf label

Question. How do we search a compact trie?

- 1. Start at the root of the compact trie
- 2. At node labeled i, follow edge labeled P[i], if any
 - if no such edge exists, search failed

0

a

۵

abaah

- 3. If leaf not reached, search failed
- 4. If leaf reached, check that P =leaf label

\$

Example. Search for ababb.

bbbb

Ь

0

bb

٨

abh

abbab

Question. How do we search a compact trie?

- 1. Start at the root of the compact trie
- 2. At node labeled i, follow edge labeled P[i], if any
 - if no such edge exists, search failed
- 3. If leaf not reached, search failed
- 4. If leaf reached, check that P =leaf label

Observation. Searching a compact trie for P[0..m) still takes time O(m).

Question. How do we search a *compact* trie?

- 1. Start at the root of the compact trie
- 2. At node labeled i, follow edge labeled P[i], if any
 - if no such edge exists, search failed
- 3. If leaf not reached, search failed
- 4. If leaf reached, check that P =leaf label

Observation. Searching a compact trie for P[0..m) still takes time O(m).

Useful feature. If a compact trie stores ℓ words, then it has at most

- $\ell 1$ internal nodes as well.
 - The size of the trie is proportional to the number of words it stores!
 - Fact (to prove). If a tree *T* has ℓ leaves and every internal node has at least two children, then *T* has at most $2\ell 1$ vertices.

Trie Discussion

Advantages of tries:

- Simple data structure!
- Space-efficient (compact tries)!
- Fast lookup!

Trie Discussion

Advantages of tries:

- Simple data structure!
- Space-efficient (compact tries)!
- Fast lookup!

Disadvantages:

- Cannot handle more general queries
 - search part of a word
 - search for a phrase (sequence of words)
- Requires the text to be partitioned into words
 - DNA/RNA sequences
 - binary text

Trie Discussion

Advantages of tries:

- Simple data structure!
- Space-efficient (compact tries)!
- Fast lookup!

Disadvantages:

- Cannot handle more general queries
 - search part of a word
 - search for a phrase (sequence of words)
- Requires the text to be partitioned into words
 - DNA/RNA sequences
 - binary text

We need new ideas!!

So Far.

- Goal. A data structure for efficient pattern matching (and more)
- Compact tries: work for text composed of (designated) words

So Far.

- Goal. A data structure for efficient pattern matching (and more)
- Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from *T*) in a trie!

- For any indices i < j, T[i..j] is a possible word
- Add all of them to the trie!

So Far.

- Goal. A data structure for efficient pattern matching (and more)
- Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from *T*) in a trie!

- For any indices i < j, T[i..j] is a possible word
- Add all of them to the trie!

The Good.

• Can search for *P*[0..*m*) in *O*(*m*) time!

So Far.

- Goal. A data structure for efficient pattern matching (and more)
- Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from *T*) in a trie!

- For any indices i < j, T[i...j) is a possible word
- Add all of them to the trie!

The Good and the Bad.

- Can search for *P*[0..*m*) in *O*(*m*) time!
- Must store $\Theta(n^2)$ possible words
- So $\Omega(n^2)$ space, even if a compact trie is used

So Far.

- Goal. A data structure for efficient pattern matching (and more)
- Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from *T*) in a trie!

- For any indices i < j, T[i...j) is a possible word
- Add all of them to the trie!

The Good and the Bad.

- Can search for *P*[0..*m*) in *O*(*m*) time!
- Must store $\Theta(n^2)$ possible words
- So $\Omega(n^2)$ space, even if a compact trie is used

An observation. P[i, i+1), P[i, i+2), P[i, i+3),... can all just be checked against P[i, n)

Definition. Given a text T[0..n) the **suffix tree** \mathcal{T} of *T* is formed by:

- take the compact trie of all suffixes of T\$ (i.e., all $T_i = T[i..n)$ \$)
- **except** replace the leaf label T_i with just the index i
 - must still store T to read from T_i

Definition. Given a text T[0..n) the **suffix tree** \mathcal{T} of *T* is formed by:

- take the compact trie of all suffixes of T\$ (i.e., all $T_i = T[i..n)$ \$)
- **except** replace the leaf label *T_i* with just the index *i*
 - must still store *T* to read from *T_i*
- **Example.** T = banana

```
banana$
anana$
nana$
ana$
na$
a$
```


Definition. Given a text T[0..n) the **suffix tree** \mathcal{T} of *T* is formed by:

- take the compact trie of all suffixes of T\$ (i.e., all $T_i = T[i..n)$ \$)
- **except** replace the leaf label *T_i* with just the index *i*
 - must still store *T* to read from *T_i*

Size. Given a text T[0..n), the suffix tree \mathcal{T} has size

Size. Given a text T[0..n), the suffix tree \mathcal{T} has size

PollEverywhere

Given T[0..n), what is the total size of the associated suffix tree \mathcal{T} ?

pollev.com/comp526

Size. Given a text T[0..n), the suffix tree \mathcal{T} has size $\Theta(n)$.

• The size of the suffix tree is only a (small) constant factor larger than *T*.

Size. Given a text T[0..n), the suffix tree \mathcal{T} has size $\Theta(n)$.

• The size of the suffix tree is only a (small) constant factor larger than *T*.

Speed. Given T[0..n), we can compute \mathcal{T} in time

Size. Given a text T[0..n), the suffix tree \mathcal{T} has size $\Theta(n)$.

• The size of the suffix tree is only a (small) constant factor larger than *T*.

Speed. Given T[0..n), we can compute \mathcal{T} in time $O(n^2)$ by a "naive" algorithm...

Size. Given a text T[0..n), the suffix tree \mathcal{T} has size $\Theta(n)$.

• The size of the suffix tree is only a (small) constant factor larger than *T*.

Speed. Given T[0..n), we can compute \mathcal{T} in time $O(n^2)$ by a "naive" algorithm...

... but \mathcal{T} can be computed in time O(n) by a clever (and practical) algorithm!!!

Size. Given a text T[0..n), the suffix tree \mathcal{T} has size $\Theta(n)$.

• The size of the suffix tree is only a (small) constant factor larger than *T*.

Speed. Given T[0..n), we can compute \mathcal{T} in time $O(n^2)$ by a "naive" algorithm...

... but \mathcal{T} can be computed in time O(n) by a clever (and practical) algorithm!!!

- This result is wild, and should be surprising!
- We'll give an overview of the algorithm on Tuesday

Size. Given a text T[0..n), the suffix tree \mathcal{T} has size $\Theta(n)$.

• The size of the suffix tree is only a (small) constant factor larger than *T*.

Speed. Given T[0..n), we can compute \mathcal{T} in time $O(n^2)$ by a "naive" algorithm...

... but \mathcal{T} can be computed in time O(n) by a clever (and practical) algorithm!!!

- This result is wild, and should be surprising!
- We'll give an overview of the algorithm on Tuesday

For now. Take it as given that \mathcal{T} can be computed in O(n) time.

Suffix Tree Applications

Application 1: String Matching

Observation. *P* occurs in $T \iff P$ is a prefix of a suffix of *T*.

Application 1: String Matching

Observation. *P* occurs in $T \iff P$ is a prefix of a suffix of *T*.

• \mathcal{T} stores (references to) all suffixes in T
Application 1: String Matching

Observation. *P* occurs in $T \iff P$ is a prefix of a suffix of *T*.

- \mathcal{T} stores (references to) all suffixes in T
- To search for *P*, try follow a path with label *P* until
 - 1. we get stuck
 - internal node without next character
 - mismatch along an edge
 - 2. we reach end of pattern P
 - all descendent leaves contain P!
 - 3. reach a leaf ℓ with part of *P* left (no match)

Bananas. T = b a n a n a b a n

Human readible suffix tree:

Bananas. T = b a n a n a b a n

Human readible suffix tree:

Note. Operations on "human readable" tree can be simulated in true suffix tree.

· each internal node stores pointer to left-most descendant index

Bananas. T = b a n a n a b a n

Human readible suffix tree:

Bananas. T = b a n a n a b a n

Human readible suffix tree:

Search P = baa

Bananas. T = b a n a n a b a n

Human readible suffix tree:

Search P =ana

Bananas. T = b a n a n a b a n

Human readible suffix tree:

Search P = ba

String Matching Discussion

Using Suffix Trees

- Pre-process a text *T*[0..*n*) in *O*(*n*) time *once*
- Search for *P*[0..*m*) in time *O*(*m*) time

String Matching Discussion

Using Suffix Trees

- Pre-process a text *T*[0..*n*) in *O*(*n*) time once
- Search for *P*[0..*m*) in time *O*(*m*) time

Compare to KMP.

- Pre-process *P*[0..*m*) in *O*(*m*) time (per pattern)
- Search in O(n+m) time for each pattern

String Matching Discussion

Using Suffix Trees

- Pre-process a text *T*[0..*n*) in *O*(*n*) time once
- Search for *P*[0..*m*) in time *O*(*m*) time

Compare to KMP.

- Pre-process *P*[0..*m*) in *O*(*m*) time (per pattern)
- Search in O(n+m) time for each pattern

Comparison. If *T* is large and static, and we expect to perform many searches, the suffix tree construction is *much* more efficient!

Problem. Given *T*, compute the **longest repeated substring** of *T*

• find the largest ℓ such that there are distinct indices *i* and *j* with $T[i, i + \ell] = T[j, j + \ell]$.

Problem. Given *T*, compute the **longest repeated substring** of *T*

• find the largest ℓ such that there are distinct indices *i* and *j* with $T[i, i + \ell] = T[j, j + \ell]$.

Example. T = b a n a n a b a n

Problem. Given *T*, compute the **longest repeated substring** of *T*

• find the largest ℓ such that there are distinct indices *i* and *j* with $T[i, i + \ell] = T[j, j + \ell]$.

Example. T = b a n a n a b a n **Repeated substrings** in the suffix tree?

Problem. Given *T*, compute the **longest repeated substring** of *T*

• find the largest ℓ such that there are distinct indices *i* and *j* with $T[i, i + \ell] = T[j, j + \ell]$.

Example. T = b a n a n a b a n

Observation. Repeated substrings correspond to paths of internal nodes in \mathcal{T} .

- Longest repeated substring = longest path of internal nodes in \mathcal{T}
 - "longest path" includes weight for compressed edges
- Can be computed in *O*(*n*) time!
 - use "depth first search" strategy

Using suffix trees we can perform the following tasks efficiently:

- **1.** Longest Common Substring in time $O(n_1 + n_2 + \dots + n_k)$
 - Input: texts T_1, T_2, \ldots, T_k
 - Output: the longest substring that is contained in all *T_i*

Using suffix trees we can perform the following tasks efficiently:

- **1.** Longest Common Substring in time $O(n_1 + n_2 + \dots + n_k)$
 - Input: texts T_1, T_2, \ldots, T_k
 - Output: the longest substring that is contained in all *T_i*
- 2. Longest Common Extension in time O(1)!!
 - Input: text *T* and indices *i*, *j*
 - Output: largest ℓ for which $T[i, i + \ell] = T[j, j + \ell]$

Using suffix trees we can perform the following tasks efficiently:

- **1.** Longest Common Substring in time $O(n_1 + n_2 + \dots + n_k)$
 - Input: texts T_1, T_2, \ldots, T_k
 - Output: the longest substring that is contained in all *T_i*
- 2. Longest Common Extension in time O(1)!!
 - Input: text *T* and indices *i*, *j*
 - Output: largest ℓ for which $T[i, i + \ell] = T[j, j + \ell]$
- 3. Approximate Matching
 - Input: text T[0..n), pattern P[0..m), parameter $k \in [0..m)$
 - Output: smallest *i* for which *T* contains *P'* with at most *k* mismatches

Using suffix trees we can perform the following tasks efficiently:

- **1.** Longest Common Substring in time $O(n_1 + n_2 + \dots + n_k)$
 - Input: texts T_1, T_2, \ldots, T_k
 - Output: the longest substring that is contained in all *T_i*
- 2. Longest Common Extension in time O(1)!!
 - Input: text *T* and indices *i*, *j*
 - Output: largest ℓ for which $T[i, i + \ell] = T[j, j + \ell]$

3. Approximate Matching

- Input: text T[0..n), pattern P[0..m), parameter $k \in [0..m)$
- Output: smallest *i* for which *T* contains *P'* with at most *k* mismatches

4. Matching with Wildcards

- Input: text *T*[0..*n*), pattern *P*[0..*m*) with wildcards
 - wildcard character * matches a substring of any length
- Output: first appearance of *P* (with wildcard matches)

Conclusion

Suffix trees are amazing data structures!

- Tons of applications
- Surprising theoretical results

Next time. Constructing suffix trees efficiently

Scratch Notes