

Lecture 18: Parallel Algorithms

COMP526: Efficient Algorithms

Updated: December 3, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Quiz 07 on Error Correcting Codes
	- Complete by 11:59pm, Friday 06 November
- 2. Grading is slow (sorry)
- 3. Last lectures:
	- Parallel Algorithms (today)
	- Text indexing (Thursday, next Tuesday)
	- Final review (next Thursday)
- 4. Attendance Code:

Meeting Goals

- 1. Discuss parallel algorithms!
- 2. Formalize cost measures for parallel algorithms
- 3. Argue Brent's theorem
- 4. Describe parallel searching algorithms
- 5. Describe parallel sorting algorithms
	- Sorting networks
	- Parallel MERGESORT

Parallel Algorithms

From Last Time

Parallel Algorithms

- Modern computers can perform many operations simultaneously
- **SIMD**: single instruction, multiple data (e.g., GPU)
- **MIMD**: multiple instructions, multiple data (e.g., multicore CPU)
- To achieve maximal performance, parallelism of hardware must be exploited

Parallel RAM

- Unbounded number of **processing elements** (PEs) think **cores**
- Access *shared memory*

Parallel RAM

- Unbounded number of **processing elements** (PEs) think **cores**
- Access *shared memory*
- PEs run in lock-step synchronization

Parallel RAM

- Unbounded number of **processing elements** (PEs) think **cores**
- Access *shared memory*
- PEs run in lock-step synchronization

Parallel RAM

- Unbounded number of **processing elements** (PEs) think **cores**
- Access *shared memory*
- PEs run in lock-step synchronization

- EREW (exclusive read, exclusive write)
	- parallel access to same memory cell is forbidden

Parallel RAM

- Unbounded number of **processing elements** (PEs) think **cores**
- Access *shared memory*
- PEs run in lock-step synchronization

- EREW (exclusive read, exclusive write)
	- parallel access to same memory cell is forbidden
- CREW (concurrent read, exclusive write)
	- parallel **write** access is forbiden

Parallel RAM

- Unbounded number of **processing elements** (PEs) think **cores**
- Access *shared memory*
- PEs run in lock-step synchronization

- EREW (exclusive read, exclusive write)
	- parallel access to same memory cell is forbidden
- CREW (concurrent read, exclusive write)
	- parallel **write** access is forbiden
- CRCW (concurrent read, concurrent write)
	- need further contention resolution rules

Parallel RAM

- Unbounded number of **processing elements** (PEs) think **cores**
- Access *shared memory*
- PEs run in lock-step synchronization

Contention Resolution. How do we deal with conflicting operations?

- EREW (exclusive read, exclusive write)
	- parallel access to same memory cell is forbidden
- CREW (concurrent read, exclusive write)
	- parallel **write** access is forbiden
- CRCW (concurrent read, concurrent write)
	- need further contention resolution rules

Bottom Line. No single model is well-suited for all applications

- we'll assume CREW
- reasoning about parallel programs can be **incredibly subtle!**

Measuring PRAM Efficiency

Main cost metrics

- **space:** the total amount of accessed memory
- **time:** the number of steps until all processes terminate
	- also known as **depth** or **span**
- **work:** total number of instructions executed by all processes

Measuring PRAM Efficiency

Main cost metrics

- **space:** the total amount of accessed memory
- **time:** the number of steps until all processes terminate
	- also known as **depth** or **span**
- **work:** total number of instructions executed by all processes

Goal:

- minimal span $(=$ time)
- work is (asymptotically) no worse than the best *sequential* algorithm
	- called **work-efficient** algorithms

Idealization. The PRAM model does not limit the number of possible PEs (processing elements)

• "multithreaded" computing allows generation of unlimited threads

Idealization. The PRAM model does not limit the number of possible PEs (processing elements)

• "multithreaded" computing allows generation of unlimited threads

Reality. More threads does not magically speed up computation

- hardware limits the amount of parallel computation
	- e.g. limited to number of cores

Idealization. The PRAM model does not limit the number of possible PEs (processing elements)

• "multithreaded" computing allows generation of unlimited threads

Reality. More threads does not magically speed up computation

- hardware limits the amount of parallel computation
	- e.g. limited to number of cores

Questions.

• How relevant/applicable is the PRAM model if it assumes access to an *unlimited* number of PEs?

Idealization. The PRAM model does not limit the number of possible PEs (processing elements)

• "multithreaded" computing allows generation of unlimited threads

Reality. More threads does not magically speed up computation

- hardware limits the amount of parallel computation
	- e.g. limited to number of cores

Questions.

- How relevant/applicable is the PRAM model if it assumes access to an *unlimited* number of PEs?
- Can **every** task be performed efficiently in PRAM?
	- are there problems that are *inherently sequential?*

Brent's Theorem

Theorem (Brent). If an algorithm has span *T* and work *W* for an arbitrary number of processors, then the algorithm can be run on a PRAM with *p* PEs in time *O*(*T* +*W*/*p*) using work *W*.

Brent's Theorem

Theorem (Brent). If an algorithm has span *T* and work *W* for an arbitrary number of processors, then the algorithm can be run on a PRAM with *p* PEs in time *O*(*T* +*W*/*p*) using work *W*.

• Proof Idea: schedule parallel steps in a "round-robin" fashion on the *p* PEs.

Enough Generalities!

Parallel Algorithms

- Searching
- Sorting
	- Sorting Networks (SIMD)
		- sorting short lists
	- Parallel MergeSort
		- sorting long lists

Parallel Searching

A computational problem is **embarassingly parallel** if it can be split into *many* small subtasks that can be solved *independently* of each other.

A computational problem is **embarassingly parallel** if it can be split into *many* small subtasks that can be solved *independently* of each other.

• Example: vector sums $C[i] = A[i] + B[i]$

A computational problem is **embarassingly parallel** if it can be split into *many* small subtasks that can be solved *independently* of each other.

- Example: vector sums $C[i] = A[i] + B[i]$
- Non-examples?
	- Sorting
		- the final value of *A*[*i*] depends on other values stored in *A*
		- not obvious how to employ parallelism

A computational problem is **embarassingly parallel** if it can be split into *many* small subtasks that can be solved *independently* of each other.

- Example: vector sums $C[i] = A[i] + B[i]$
- Non-examples?
	- Sorting
		- the final value of *A*[*i*] depends on other values stored in *A*
		- not obvious how to employ parallelism
	- LZW compression ("*P*-complete")
		- Input: string *S* phrase *p*
		- Output: does LZW add *p* to the dictionary?

Parallel String Matching

Recall the **string matching** problem:

- Text *T*, length *n*
- Pattern *P*, length *m*
- **Goal:** find all occurrences of *P* in *T*
	- return array *M* of length *n* where $M[i] = 1$ if *P* matches *T* at index *i*, and $M[i] = 0$ otherwise

Parallel String Matching

Recall the **string matching** problem:

- Text *T*, length *n*
- Pattern *P*, length *m*
- **Goal:** find all occurrences of *P* in *T*
	- return array *M* of length *n* where $M[i] = 1$ if *P* matches *T* at index *i*, and $M[i] = 0$ otherwise

Question. Is this problem embarrassingly parallel?

Parallel String Matching

Recall the **string matching** problem:

- Text *T*, length *n*
- Pattern *P*, length *m*
- **Goal:** find all occurrences of *P* in *T*
	- return array *M* of length *n* where $M[i] = 1$ if *P* matches *T* at index *i*, and $M[i] = 0$ otherwise

Question. Is this problem embarrassingly parallel?

• can check each index *i* independently!

Idea. Use the *brute force* procedure to check each *i* in parallel.

Idea. Use the *brute force* procedure to check each *i* in parallel.

1: **procedure**

PARALLELBFMATCH(*T*[0..*n*),*P*[0..*m*)) 2: **for** *i* = 0,1,...,*n*−1 **in parallel do** 3: **for** *j* = 0,1,...,*m*−1 **do** 4: **if** $T[i+j] \neq P[j]$ **then break** 5: **end for** 6: **if** $j = m$ **then** $M[i] = 1$ 7: **else** $M[i] = 0$ 8: **end for**

9: **end procedure**

Idea. Use the *brute force* procedure to check each *i* in parallel.

PollEverywhere

What is the **span** of this computation?

pollev.com/comp526

1: **procedure**

PARALLELBFMATCH(*T*[0..*n*),*P*[0..*m*)) 2: **for** *i* = 0,1,...,*n*−1 **in parallel do** 3: **for** *j* = 0,1,...,*m*−1 **do** 4: **if** $T[i+j] \neq P[j]$ then break 5: **end for**

6: if
$$
j = m
$$
 then $M[i] = 1$

$$
7: \qquad \qquad \mathbf{else}\ M[i] = 0
$$

- 8: **end for**
- 9: **end procedure**

Idea. Use the *brute force* procedure to check each *i* in parallel.

Efficiency

• Span:

1: **procedure**

PARALLELBFMATCH(*T*[0..*n*),*P*[0..*m*)) 2: **for** *i* = 0,1,...,*n*−1 **in parallel do** 3: **for** *j* = 0,1,...,*m*−1 **do** 4: **if** $T[i+j] \neq P[j]$ **then break** 5: **end for** 6: **if** $j = m$ **then** $M[i] = 1$ 7: **else** $M[i] = 0$

- 8: **end for**
- 9: **end procedure**

Idea. Use the *brute force* procedure to check each *i* in parallel.

Efficiency

- Span: $T = O(m)$
- Work:

1: **procedure**

PARALLELBFMATCH(*T*[0..*n*),*P*[0..*m*)) 2: **for** *i* = 0,1,...,*n*−1 **in parallel do** 3: **for** *j* = 0,1,...,*m*−1 **do** 4: **if** $T[i+j] \neq P[j]$ **then break** 5: **end for** 6: **if** $j = m$ **then** $M[i] = 1$

$$
7: \qquad \qquad \mathbf{else}\ M[i] = 0
$$

- 8: **end for**
- 9: **end procedure**

Idea. Use the *brute force* procedure to check each *i* in parallel.

Efficiency

- Span: $T = O(m)$
- Work: $W = O(mn)$
	- **not** work efficient
- Brent: running time with *p* PEs is *O*(*m*+*mn*/*p*)

1: **procedure**

PARALLELBFMATCH(*T*[0..*n*),*P*[0..*m*)) 2: **for** *i* = 0,1,...,*n*−1 **in parallel do** 3: **for** *j* = 0,1,...,*m*−1 **do** 4: **if** $T[i+j] \neq P[j]$ **then break** 5: **end for** 6: **if** $j = m$ **then** $M[i] = 1$ 7: **else** $M[i] = 0$ 8: **end for**

9: **end procedure**

Idea. Use the *brute force* procedure to check each *i* in parallel.

Efficiency

- Span: $T = O(m)$
- Work: $W = O(mn)$
	- **not** work efficient
- Brent: running time with *p* PEs is *O*(*m*+*mn*/*p*)

Question. Can we do better?

1: **procedure**

PARALLELBFMATCH(*T*[0..*n*),*P*[0..*m*)) 2: **for** *i* = 0,1,...,*n*−1 **in parallel do** 3: **for** *j* = 0,1,...,*m*−1 **do** 4: **if** $T[i+j] \neq P[j]$ **then break** 5: **end for** 6: **if** $j = m$ **then** $M[i] = 1$ 7: **else** $M[i] = 0$ 8: **end for** 9: **end procedure**
Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

PollEverywhere

What is the running time of KMP to search for a pattern of length *m* in a text of length *n*?

pollev.com/comp526

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

- partition *T* into segments
- apply KMP to each segment

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

- partition *T* into segments
- apply KMP to each segment
- why doesn't this work?

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

- partition *T* into segments
- apply KMP to each segment
- why doesn't this work?
- use **overlapping** segments!

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

Question. How to parallelize KMP?

- partition *T* into segments
- apply KMP to each segment
- why doesn't this work?
- use **overlapping** segments!

1: **procedure**

PARALLELKMP(*T*[0..*n*),*P*[0..*m*))

$$
3: T_b = T(mb, mb + 2m - 1)
$$

4:
$$
M[i, i+m) \leftarrow \text{KMP}(T_b, P)
$$

- 5: **end for**
- 6: **end procedure**

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

Question. How to parallelize KMP?

- partition *T* into segments
- apply KMP to each segment
- why doesn't this work?
- use **overlapping** segments!
- Span:

1: **procedure**

PARALLELKMP(*T*[0..*n*),*P*[0..*m*))

$$
3: T_b = T(mb, mb + 2m - 1)
$$

4:
$$
M[i, i+m) \leftarrow \text{KMP}(T_b, P)
$$

- 5: **end for**
- 6: **end procedure**

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

Question. How to parallelize KMP?

- partition *T* into segments
- apply KMP to each segment
- why doesn't this work?
- use **overlapping** segments!
- Span: *O*(*m*)
- Work:

1: **procedure**

PARALLELKMP(*T*[0..*n*),*P*[0..*m*))

$$
3: T_b = T(mb, mb + 2m - 1)
$$

4:
$$
M[i, i+m) \leftarrow \text{KMP}(T_b, P)
$$

- 5: **end for**
- 6: **end procedure**

Recall the KMP (Knuth-Morris-Pratt) string matching algorithm

- compute failure link array
- apply FLA to search for matches

Question. How to parallelize KMP?

- partition *T* into segments
- apply KMP to each segment
- why doesn't this work?
- use **overlapping** segments!
- Span: *O*(*m*)
- Work: *O*(*n*)
	- this is work efficient!

1: **procedure**

PARALLELKMP(*T*[0..*n*),*P*[0..*m*))

$$
3: T_b = T(mb, mb + 2m - 1)
$$

4:
$$
M[i, i+m) \leftarrow \text{KMP}(T_b, P)
$$

- 5: **end for**
- 6: **end procedure**

Parallel String Matching Discussion

Assessment

- very simple methods
- can be run in a *distributed* setting
- parallel speedup only for *m* ≪ *n*

Parallel String Matching Discussion

Assessment

- very simple methods
- can be run in a *distributed* setting
- parallel speedup only for *m* ≪ *n*

Questions

• What if we only want to find if there is a single occurrence of *P* in *T*?

Parallel String Matching Discussion

Assessment

- very simple methods
- can be run in a *distributed* setting
- parallel speedup only for *m* ≪ *n*

Questions

- What if we only want to find if there is a single occurrence of *P* in *T*?
- What if *m* large? State of the art:
	- *O*(log*m*) & work efficient for CREW-PRAM
	- CRCW-PRAM *O*(1) matching part in *O*(1) time, with Θ(loglog*m*) preprocessing

Sorting Networks

Recall. In-place sorting algorithms modified the array according to the following pattern:

- check if *A*[*i*] and *A*[*j*] are out of order
- if so, swap their values

Recall. In-place sorting algorithms modified the array according to the 1: **procedure** INSERTIONSORT(*a*,*n*) following pattern:

- check if *A*[*i*] and *A*[*j*] are out of order
- if so, swap their values

Example. INSERTIONSORT

```
2: for i = 1,2,...,n−1 do
3: j \leftarrow i<br>4: while
        while j > 0 and a[j] < a[i-1] do
5: SWAP(a, j, j-1)6: j \leftarrow j-17: end while
8: end for
9: end procedure
```
Recall. In-place sorting algorithms modified the array according to the 1: **procedure** INSERTIONSORT(*a*,*n*) following pattern: 2: **for** *i* = 1,2,...,*n*−1 **do** 3: $i \leftarrow i$

- check if *A*[*i*] and *A*[*j*] are out of order
- if so, swap their values

Example. INSERTIONSORT

```
4: while j > 0 and a[j] < a[j-1] do
5: SWAP(a, j, j-1)6: j \leftarrow j-17: end while
8: end for
9: end procedure
```
Abstract View. A **comparator** is is a PE that takes two values as inputs and returns the values in sorted order.

- $comp(x, y) = (min\{x, y\}, max\{x, y\})$
- all array modifications of INSERTIONSORT can be performed by comparators

Recall. In-place sorting algorithms modified the array according to the 1: **procedure** INSERTIONSORT(*a*,*n*) following pattern: • check if *A*[*i*] and *A*[*j*] are out of 2: **for** *i* = 1,2,...,*n*−1 **do** 3: $i \leftarrow i$ 4: **while** $j > 0$ and $a[j] < a[j-1]$ **do**

- order
- if so, swap their values
- **Example.** INSERTIONSORT

5: $SWAP(a, j, j-1)$ 6: $j \leftarrow j-1$ 7: **end while** 8: **end for** 9: **end procedure**

Abstract View. A **comparator** is is a PE that takes two values as inputs and returns the values in sorted order.

- $comp(x, y) = (min\{x, y\}, max\{x, y\})$
- all array modifications of INSERTIONSORT can be performed by comparators

Question. Which comparator operations of INSERTIONSORT can be performed in parallel (while still ensuring correct output)?

Comparator Networks

Visual Representation.

- Inputs/indices are represented by **wires** (horizontal lines)
- Comparators are vertical line segments between wires
	- interpretation: wire between wire *i* and *j* performs comp to indices *i* and *j* input
- Execution: Scan diagram from left to right and apply comparators in order they are encountered

Comparator Networks

Visual Representation.

- Inputs/indices are represented by **wires** (horizontal lines)
- Comparators are vertical line segments between wires
	- interpretation: wire between wire *i* and *j* performs comp to indices *i* and *j* input
- Execution: Scan diagram from left to right and apply comparators in order they are encountered

Example. Consider the following comparator network on 4 wires. What is the output on input $[4,3,2,1]$?

Sorting Algorithms to Networks

Consider INSERTIONSORT on inputs of size 5. What are the (possible) comparator operations performed by the algorithm?

• Which comparator operations could be performed *in parallel*?

1: **procedure** INSERTIONSORT(*a*,*n*)

2: for
$$
i = 1, 2, ..., n-1
$$
 do
3: $i \leftarrow i$

$$
j \leftarrow i
$$

4: **while** $j > 0$ and $a[j] < a[j-1]$ **do**

$$
5: \qquad \qquad \text{SWAP}(a,j,j-1)
$$

6:
$$
j \leftarrow j-1
$$

- 7: **end while**
- 8: **end for**
- 9: **end procedure**

Definitions.

• A **comparator network** is defined by a set of wires and a sequence of comparators (left to right).

Definitions.

- A **comparator network** is defined by a set of wires and a sequence of comparators (left to right).
- A comparator network is a **sorting network** if for all wire inputs, the resulting outputs are sorted.

Definitions.

- A **comparator network** is defined by a set of wires and a sequence of comparators (left to right).
- A comparator network is a **sorting network** if for all wire inputs, the resulting outputs are sorted.
- The **depth** of a comparator network is the maximum number of comparators touched on any path from input to output (including crossed comparators).

Definitions.

- A **comparator network** is defined by a set of wires and a sequence of comparators (left to right).
- A comparator network is a **sorting network** if for all wire inputs, the resulting outputs are sorted.
- The **depth** of a comparator network is the maximum number of comparators touched on any path from input to output (including crossed comparators).

Sorting networks and parallel algorithms.

- Each comparator is a process element
- The depth is the span (running time) of the network
- The work is the number of comparators

Definitions.

- A **comparator network** is defined by a set of wires and a sequence of comparators (left to right).
- A comparator network is a **sorting network** if for all wire inputs, the resulting outputs are sorted.
- The **depth** of a comparator network is the maximum number of comparators touched on any path from input to output (including crossed comparators).

Sorting networks and parallel algorithms.

- Each comparator is a process element
- The depth is the span (running time) of the network
- The work is the number of comparators

Question. What is the smallest/shallowest sorting network for a given input size?

- Optimal *size* sorting networks are only known for up to 12 inputs
- Optimal *depth* is only known up to 18 inputs

Some Optimal Sorting Networks

Example. $n = 4$ wires. What is the depth?

Some Optimal Sorting Networks

Example. $n = 5$ wires.

PollEverywhere

What is the **depth** of this s sorting network? $\frac{1}{2}$ $\frac{1}{2}$

Sorting Network Discussion

Applications

- Hardware-level implementations
	- comparators implemented with simple circuits
	- operations in one/few clock cycles

Sorting Network Discussion

Applications

- Hardware-level implementations
	- comparators implemented with simple circuits
	- operations in one/few clock cycles
- Sorting with GPUs
	- apply many (software) comparators in parallel (SIMD)

Sorting Network Discussion

Applications

- Hardware-level implementations
	- comparators implemented with simple circuits
	- operations in one/few clock cycles
- Sorting with GPUs
	- apply many (software) comparators in parallel (SIMD)

General Construction. Bitonic Merge Sort

- Mimic recursive structure of MERGESORT
- Size $O(n \log^2 n)$
- Depth $O(\log^2 n)$
- Not work-efficient, but still practical

Parallel MergeSort

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to parallelism:

- 1. Divide problem into sub-tasks
- 2. Solve the subtasks
- 3. Merge solutions of the subtasks

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to parallelism:

- 1. Divide problem into sub-tasks
- 2. Solve the subtasks (**independently**)
	- Parallelize these!
- 3. Merge solutions of the subtasks

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to parallelism:

- 1. Divide problem into sub-tasks
- 2. Solve the subtasks (**independently**)
	- Parallelize these!
- 3. Merge solutions of the subtasks (**...?**)
	- How to parallelize this?

Parallel MergeSort?

Revisited: MERGESORT

1: **procedure** MERGESORT(*A*,*i*,*k*) 2: **if** $i < k$ **then** 3: $j \leftarrow \lfloor (i+k)/2 \rfloor$ 4: MERGESORT(*A*,*i*,*j*) 5: MERGESORT $(A, j+1, k)$ 6: $B \leftarrow \text{Copy}(A, i, j)$ 7: $C \leftarrow \text{Copy}(A, j+1, k)$ 8: MERGE(*B*,*C*,*A*,*i*) 9: **end if** 10: **end procedure**
Parallel MergeSort?

PollEverywhere

What is the span of MergeSort with parallel recursive calls and sequential merges?

pollev.com/comp526

- 1: **procedure** MERGESORT(*A*,*i*,*k*)
- 2: **if** $i < k$ **then**
- 3: $j \leftarrow |(i+k)/2|$
- 4: MERGESORT(*A*,*i*,*j*)
- 5: MERGESORT $(A, j+1, k)$
- 6: $B \leftarrow \text{Copy}(A, i, j)$
- 7: $C \leftarrow \text{Copy}(A, j+1, k)$
- 8: MERGE(*B*,*C*,*A*,*i*)
- 9: **end if**
- 10: **end procedure**

Question. How can we *parallelize merges?*

Question. How can we *parallelize merges?*

- For each *x*, find the final index of *x*
- How do we find this?

Question. How can we *parallelize merges?*

- For each *x*, find the final index of *x*
- How do we find this?
- index $=$ # elements $\leq x$
	- # in *x*'s sub-array
	- # in other sub-array
- How to compute these?

Question. How can we *parallelize merges?*

- For each *x*, find the final index of *x*
- How do we find this?
- index $=$ # elements $\leq x$
	- # in *x*'s sub-array
	- # in other sub-array
- How to compute these?

Idea.

• In *x*'s own sub-array, just use *x*'s index!

Question. How can we *parallelize merges?*

- For each *x*, find the final index of *x*
- How do we find this?
- index $=$ # elements $\leq x$
	- # in *x*'s sub-array
	- # in other sub-array
- How to compute these?

Idea.

- In *x*'s own sub-array, just use *x*'s index!
- For the other sub-array, use binary search!

Question. How can we *parallelize merges?*

- For each *x*, find the final index of *x*
- How do we find this?
- index $=$ # elements $\leq x$
	- # in *x*'s sub-array
	- # in other sub-array
- How to compute these?

Idea.

- In *x*'s own sub-array, just use *x*'s index!
- For the other sub-array, use binary search!
- **Parallelize:** do each *x* in parallel!

- 1: **procedure** PARALLELMERGE(*A*[*l*..*m*), *A*[*m*..*r*), *B*)
- 2: **for** *i* = *l*,...,*m*−1 **in parallel do**
- 3: $k \leftarrow (i-l) + \text{BINARYSEARCH}(A[m..r), A[i])$
- 4: $B[k] \leftarrow A[i]$
- 5: **end for**
- 6: **for** $j = m, m + 1, ..., r 1$ **in parallel do**
- 7: $k \leftarrow \text{BINARYSEARCH}(A[l..m), A[j])$
- 8: $B[k] \leftarrow A[j]$
- 9: **end for**
- 10: **end procedure**

- 1: **procedure** PARALLELMERGE(*A*[*l*..*m*), *A*[*m*..*r*), *B*)
- 2: **for** *i* = *l*,...,*m*−1 **in parallel do**
- 3: $k \leftarrow (i-l) + \text{BINARYSEARCH}(A[m..r), A[i])$
- 4: $B[k] \leftarrow A[i]$
- 5: **end for**
- 6: **for** $j = m, m+1, ..., r-1$ **in parallel do**
- 7: $k \leftarrow \text{BINARYSEARCH}(A[l..m), A[j])$
- 8: $B[k] \leftarrow A[j]$
- 9: **end for**

10: **end procedure**

Questions.

• What is the **span** of PARALLELMERGE?

- 1: **procedure** PARALLELMERGE(*A*[*l*..*m*), *A*[*m*..*r*), *B*)
- 2: **for** *i* = *l*,...,*m*−1 **in parallel do**
- 3: $k \leftarrow (i-l) + \text{BINARYSEARCH}(A[m..r), A[i])$
- 4: $B[k] \leftarrow A[i]$
- 5: **end for**
- 6: **for** $j = m, m+1, ..., r-1$ **in parallel do**
- 7: $k \leftarrow \text{BINARYSEARCH}(A[l..m), A[j])$
- 8: $B[k] \leftarrow A[j]$
- 9: **end for**

10: **end procedure**

Questions.

- What is the **span** of PARALLELMERGE?
	- Θ(log*n*)
- What is the **work** of PARALLELMERGE?

- 1: **procedure** PARALLELMERGE(*A*[*l*..*m*), *A*[*m*..*r*), *B*)
- 2: **for** *i* = *l*,...,*m*−1 **in parallel do**
- 3: $k \leftarrow (i-l) + \text{BINARYSEARCH}(A[m..r), A[i])$
- 4: $B[k] \leftarrow A[i]$
- 5: **end for**
- 6: **for** $j = m, m+1, ..., r-1$ **in parallel do**
- 7: $k \leftarrow \text{BINARYSEARCH}(A[l..m), A[j])$
- 8: $B[k] \leftarrow A[j]$
- 9: **end for**

10: **end procedure**

Questions.

- What is the **span** of PARALLELMERGE?
	- Θ(log*n*)
- What is the **work** of PARALLELMERGE?
	- Θ(*n*log*n*)

Overall Procedure

- 1. Split (sub)array in half
- 2. Parallel recursive MergeSorts
- 3. PARALLELMERGE sorted halves

Overall Procedure

- 1. Split (sub)array in half
- 2. Parallel recursive MergeSorts
- 3. PARALLELMERGE sorted halves

Span Analysis

- Merge has span Θ(log*n*)
- Depth of recursion tree is Θ(log*n*)
- Total time: $\Theta(\log^2 n)$

Overall Procedure

- 1. Split (sub)array in half
- 2. Parallel recursive MergeSorts
- 3. PARALLELMERGE sorted halves

Span Analysis

- Merge has span Θ(log*n*)
- Depth of recursion tree is Θ(log*n*)
- Total time: $\Theta(\log^2 n)$

Work Analysis

- Merge has work Θ(*n*log*n*)
- Summing over recursive calls gives $\Theta(n \log^2 n)$

Overall Procedure

- 1. Split (sub)array in half
- 2. Parallel recursive MergeSorts
- 3. PARALLELMERGE sorted halves

Span Analysis

- Merge has span Θ(log*n*)
- Depth of recursion tree is Θ(log*n*)
- Total time: $\Theta(\log^2 n)$

Work Analysis

- Merge has work Θ(*n*log*n*)
- Summing over recursive calls gives $\Theta(n \log^2 n)$

Improvements. Merge can be improved to $\Theta(n)$ work! (but it's complicated)

Concluding Thoughts

Parallelism is Necessary

- Computer hardware is naturally parallel
	- sequential computing is an illusion!

Concluding Thoughts

Parallelism is Necessary

- Computer hardware is naturally parallel
	- sequential computing is an illusion!

Parallelism is Powerful

• Recent explosion in computing power is due to parallelism!

Concluding Thoughts

Parallelism is Necessary

- Computer hardware is naturally parallel
	- sequential computing is an illusion!

Parallelism is Powerful

• Recent explosion in computing power is due to parallelism!

Parallelism is Subtle

- Reasoning about parallel programs is hard
- Writing correct parallel programs is hard
- Idealized models abstract away many challenges
	- no perfect synchrony?
	- tolerate faults?

• Text Indexing

Scratch Notes