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Announcements
1. Programming Assignment 2 posted

• Due 29 November

2. No Quiz This Week!

3. Attendance Code:
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Meeting Goals
1. Finish discussion error correcting codes

• Parity checking
• Hamming Codes

2. Introduce parallel algorithms

3 / 36



Error Correcting
Codes



From Last Time
Communcation Model.

• Goal: send a text S ∈ {0,1}∗
(bitstream) across a communication
channel

• Any bit transmitted through the

channel might flip

• 0 7→ 1 or 1 7→ 0
• no erasures or insertions

• To cope with errors:

• compute and send an
encoded bitstream C(S)

• receiver decodes C to get S

Block Codes. Assumptions
• Messages consists of fixed sized

blocks

• k = message length
• m ∈ {0,1}k

• Encode each message separate as

C(m) ∈ {0,1}n

• C(m) is codeword for m
• n is the block length
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Requirements for Detecting and Correcting
Detecting Requirement. Suppose C can detect errors of flipping up to
b bits. Then C has distance d ≥ b+1.

Correcting Requirement. Suppose C can correct errors of flipping up
to b bits. Then C has distance d ≥ 2b+1
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Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code
of distance d?
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Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code
of distance d?

Singleton Bound. 2k ≤ 2n−(d−1), hence n ≥ k+d−1
Proof sketch.

• Consider the deleting the first d−1 bits of each codeword.

• Remaining codewords are still pair-wise distinct

• There are only 2n−(d−1) possible shorter bitstrings
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Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code
of distance d?

Singleton Bound. 2k ≤ 2n−(d−1), hence n ≥ k+d−1

Hamming bound. 2k ≤ 2n
/∑⌊(d−1)/2⌋

f =0

(n
f

)
.

Proof sketch.

• Codewords must be at distance d away

• Thus balls centered at codewords of radius ⌊(d−1)/2⌋ must be
disjoint

• Number of balls × volume of each ball must be at most 2n
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Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code
of distance d?

Singleton Bound. 2k ≤ 2n−(d−1), hence n ≥ k+d−1

Hamming bound. 2k ≤ 2n
/∑⌊(d−1)/2⌋

f =0

(n
f

)
.

Question. These are impossibility results. What is possible?
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Error Detection &
Correction



Error Detection: Parity Bits
Question. How can we detect a single error?

Obsevation. If a single bit gets flipped, the number of 1s increases or
decreases by exactly 1

• the parity of the string changes

Idea. Form C by adding an extra bit to message m that encodes the
parity of m

• the extra bit is called a parity bit
• which strings are valid codewords?

• the parity of valid codewords is always 1!
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Parity Bit Example
Small Example. Consider k = 2, so
that n = 3 with parity bits.

• Messages {00,01,10,11}

• C = {000,011,101,110}

• What is the distance of C?

• How do we detect errors?
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Parity Bit Example
Small Example. Consider k = 2, so
that n = 3 with parity bits.

• Messages {00,01,10,11}

• C = {000,011,101,110}

• What is the distance of C?

• How do we detect errors?

PollEverywhere Question

Consider the code C with k = 2 bit
messages and one parity bit. What
is the distance d of C?

pollev.com/comp526
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Error Correction through Duplication
Suppose we want to correct a single error. How is this even possible?

Simple Solution. Duplicate each bit 3 times and send the duplicates!

• k = 1, n = 3

• C(b) = bbb

• How do we decode a message?

• View on Hamming cube!
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Error Correction through Duplication
Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

• k = 1, n = 3

• C(b) = bbb

• How do we decode a message?

• View on Hamming cube!

Inefficiency. To correct a single error, we must triple the length of the
message?!

A Puzzle. How can we correct a single error more efficiently?

• Don’t need to duplicate every bit!

• Idea: use parity checks on parts of the string to identify the index
where error occurred!
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Hamming Codes



How to Locate Errors?
Idea. Use several parity bits!

• Each parity bit detects an error on a part of the input
• Choose parts so that parity checks uniquely specify location of

error
• Error may be in one of the parity bits itself!

Binary Trick. Blocks of size n = 7 bits: B = B7B6B5B4B3B2B1

• Write indices in binary
• 111, 110, 101, 100, 011, 010, 001

• Have a parity check for each bit of the index where the error could
have occurred

• was the error at an index whose jth bit is 1?
• 111, 110, 101, 100, 011, 010, 001
• 111, 110, 101, 100, 011, 010, 001
• 111, 110, 101, 100, 011, 010, 001

• Question. Where do we store parity/message bits?
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(7, 4) Hamming Code
Parity Values. Store parity bits at indices j = 1002,0102,0012.

• Use other 4 bits for messages

index 111 110 101 100 011 010 001

bit B7 B6 B5 B4 B3 B2 B1

Question. Why use these three bits for parity checks?

111, 110, 101, 100, 011, 010, 001

• They are independent of the other parity checks!
• 111, 110, 101, 100, 011, 010, 001
• 111, 110, 101, 100, 011, 010, 001
• 111, 110, 101, 100, 011, 010, 001
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Encoding (7, 4) Hamming Code
Procedure. To encode m = m3m2m1m0:

1. write the bits of m to indices 7,6,5,3 of the codeword

2. compute the parity bits:
• p4 = m3 ⊕m2 ⊕m1
• p2 = m3 ⊕m2 ⊕m0
• p1 = m3 ⊕m1 ⊕m0

index 111 110 101 100 011 010 001

bit m3 m2 m1 m0
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Encoding (7, 4) Hamming Code
Procedure. To encode m = m3m2m1m0:

1. write the bits of m to indices 7,6,5,3 of the codeword

2. compute the parity bits:
• p4 = m3 ⊕m2 ⊕m1
• p2 = m3 ⊕m2 ⊕m0
• p1 = m3 ⊕m1 ⊕m0

index 111 110 101 100 011 010 001

bit m3 m2 m1 p4 m0 p2 p1

Example. Encode the message m = 1011

index 111 110 101 100 011 010 001

bit
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Hamming Code Distance
Recall. Code distance is the
minimum Hamming distance
between any two codewords.
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Hamming Code Distance
Recall. Code distance is the
minimum Hamming distance
between any two codewords.

PollEverywhere Question

What is the code distance of the
(7,4) Hamming code?

pollev.com/comp526
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Hamming Code Distance
Recall. Code distance is the
minimum Hamming distance
between any two codewords.

• Suppose A = A7A6A5A4A3A2A1 and
B = B7B6B5B4B3B2B1 are codewords

• A4,A2,A1 determined from other
values (similarly for B)

• A and B differ on at least one index
7 = 1112,6 = 1102,5 = 1012,3 = 0112

• If A and B differ on exactly one
message bit, then two parity bits
differ as well

• Check: if A and B differ on two
message bits, then at least one parity
bit differs as well!
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Hamming Code Distance
Recall. Code distance is the
minimum Hamming distance
between any two codewords.

• Suppose A = A7A6A5A4A3A2A1 and
B = B7B6B5B4B3B2B1 are codewords

• A4,A2,A1 determined from other
values (similarly for B)

• A and B differ on at least one index
7 = 1112,6 = 1102,5 = 1012,3 = 0112

• If A and B differ on exactly one
message bit, then two parity bits
differ as well

• Check: if A and B differ on two
message bits, then at least one parity
bit differs as well!

Note. Code distance 3 implies correcting 1 error might be possible. . .
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Decoding (7, 4) Hamming Code
Procedure. Given received message B = B7B6B5B4B3B2B1:

1. Compute the parity bits
• p4 = B7 ⊕B6 ⊕B5 ⊕B4
• p2 = B7 ⊕B6 ⊕B3 ⊕B2
• p1 = B7 ⊕B5 ⊕B3 ⊕B1

2. Form index j with binary representation p4p2p1

3. If j ̸= 0, form B′ by flipping Bj to 1−Bj

4. Decode the message m = B′
7B′

6B′
5B′

3

Example. Decode the message B = 1110101

• m = 1011

Note. If j = 0, then B is a valid codeword. If j ̸= 0, then B′ is a valid
codeword at distance 1 from B.
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Error Correction Prospectus
(7, 4) Hamming Codes are perfect:

• m, n, and d match the Hamming lower bound for block codes

Generalizations.
• General Hamming codes:

• Codeword length n = 2ℓ−1 for any ℓ
• ℓ parity bits
• Message length 2ℓ−ℓ−1 message length
• All are perfect!

• Other optimal values of m,n,d are generally not known
• many efficient schemes use algebraic constructions
• almost all randomly chosen codes are good(!)
• ongoing research!
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Parallel
Algorithms



Improving Technology?
Laptop Power.

• My first laptop (ca. 2004)
• Compaq Presario 2100
• $900 new ($1,500 with

inflation)
• now < $15 used

• Intel Celeron CPU, 1.6 GHz

• Recent laptop (ca. 2021)
• Apple MacBook Pro, 2020
• $1,400 ($1,500 with

inflation)
• Now $800 used

• Intel Core i5 CPU, 1.4 GHz

Question. Is my old laptop (in a landfill somewhere) faster than my
current computer?
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• Intel Celeron CPU, 1.6 GHz

• Recent laptop (ca. 2021)
• Apple MacBook Pro, 2020
• $1,400 ($1,500 with

inflation)
• Now $800 used

• Intel Core i5 CPU, 1.4 GHz

PollEverywhere Question

How much faster is a new
mid/high range laptop computer
today than a comparable model
from 20 years ago?

pollev.com/comp526
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Processor Speed is Not Increasing

Year Transistors Clock speed CPU model
1979 30 k 5 MHz 8088
1985 300 k 20 MHz 386
1989 1 M 20 MHz 486
1995 6 M 200 MHz Pentium Pro
2000 40 M 2 000 MHz Pentium 4
2005 100 M 3 000 MHz 2-core Pentium D
2008 700 M 3 000 MHz 8-core Nehalem
2014 6 B 2 000 MHz 18-core Haswell
2017 20 B 3 000 MHz 32-core AMD Epyc
2019 40 B 3 000 MHz 64-core AMD Rome
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Year Transistors Clock speed CPU model
1979 30 k 5 MHz 8088
1985 300 k 20 MHz 386
1989 1 M 20 MHz 486
1995 6 M 200 MHz Pentium Pro
2000 40 M 2 000 MHz Pentium 4
2005 100 M 3 000 MHz 2-core Pentium D
2008 700 M 3 000 MHz 8-core Nehalem
2014 6 B 2 000 MHz 18-core Haswell
2017 20 B 3 000 MHz 32-core AMD Epyc
2019 40 B 3 000 MHz 64-core AMD Rome

But the number of transistors is growing exponentially!
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Speed vs Throughput
Measuring Performance

• Processor speed is the number processor clock cycles per second
• Latency of an operation is the time from when the operation

starts to when it completes
• speed determines latency of individual operations
• speed bounded by physical constraints (e.g. speed of light)

• Throughput is the number of (useful) operations performed each
second

• U of L graduates about 6,000 student each year

• =⇒ each degree takes 1/6,000 year (≈ 88 minutes)
• WRONG!!!

• how long does a degree take?
• how does U of L have so many graduates?
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Parallelism
Parallelism is the ability to perform multiple operations
simultaneously

• Bit level parallelism: adding 32-bit numbers
• Single Instruction Multiple Data (SIMD) parallelism:

• vector operations in a GPU

• Multiple Instruction Multiple Data (MIMD) parallelism:
• multicore CPUs

• Distributed/networked computing
• cluster computing, “cloud” computing, server farms

23 / 36



Parallelism
Parallelism is the ability to perform multiple operations
simultaneously

Examples of parallelism in computers

• Bit level parallelism: adding 32-bit numbers

• Single Instruction Multiple Data (SIMD) parallelism:
• vector operations in a GPU

• Multiple Instruction Multiple Data (MIMD) parallelism:
• multicore CPUs

• Distributed/networked computing
• cluster computing, “cloud” computing, server farms

23 / 36



Parallelism
Parallelism is the ability to perform multiple operations
simultaneously

Examples of parallelism in computers

• Bit level parallelism: adding 32-bit numbers
• Single Instruction Multiple Data (SIMD) parallelism:

• vector operations in a GPU

• Multiple Instruction Multiple Data (MIMD) parallelism:
• multicore CPUs

• Distributed/networked computing
• cluster computing, “cloud” computing, server farms

23 / 36



Parallelism
Parallelism is the ability to perform multiple operations
simultaneously

Examples of parallelism in computers

• Bit level parallelism: adding 32-bit numbers
• Single Instruction Multiple Data (SIMD) parallelism:

• vector operations in a GPU

• Multiple Instruction Multiple Data (MIMD) parallelism:
• multicore CPUs

• Distributed/networked computing
• cluster computing, “cloud” computing, server farms

23 / 36



Parallelism
Parallelism is the ability to perform multiple operations
simultaneously

Examples of parallelism in computers

• Bit level parallelism: adding 32-bit numbers
• Single Instruction Multiple Data (SIMD) parallelism:

• vector operations in a GPU

• Multiple Instruction Multiple Data (MIMD) parallelism:
• multicore CPUs

• Distributed/networked computing
• cluster computing, “cloud” computing, server farms

23 / 36



The Power of Parallelism
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Modeling Parallel Computing
Restricted Model: SIMD instructions

• Program = sequence of instructions to be performed

• If same operation is performed on multiple data, operations can
be performed simultaneously

• Example:

for i = 0 to n-1:
C[i] = A[i] + B[i]
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Restricted Model: SIMD instructions

• Program = sequence of instructions to be performed

• If same operation is performed on multiple data, operations can
be performed simultaneously

• Example:

for i = 0 to n-1:
C[i] = A[i] + B[i]

General Model: PRAM (Parallel RAM)
• Program can spawn processes/processing elements (PEs) that

run in parallel
• each process is like its own program

• Processes have shared memory

Warning. PRAM programs can be incredibly subtle to reason
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Measuring PRAM Efficiency
Main cost metrics

• space: the total amount of accessed memory
• time: the number of steps until all processes terminate

• also known as depth or span

• work: total number of instructions executed by all processes

Goal:

• minimal span (= time)
• work is (asymptotically) no worse than the best sequential

algorithm
• called work-efficient algorithms
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Models vs Reality
Idealization. The PRAM model does not limit the number of possible
PEs (processing elements)

• “multithreaded” computing allows generation of unlimited
threads

Reality. More threads does not magically speed up computation
• hardware limits the amount of parallel computation

• e.g. limited to number of cores

Middle Ground (Brent’s Theorem). If an algorithm has span T and
work W for an arbitrary number of processors, then the algorithm can
be run on a PRAM with p PEs in time O(T +W /p) using work W .

• Idea: schedule parallel steps in a “round-robin” fashion on the p
PEs.
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Enough Generalities!
Parallel Algorithms

• Sorting
• Sorting Networks (SIMD)

• sorting short lists
• Parallel MergeSort

• sorting long lists

• Searching
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Sorting Networks



Comparitors
Recall. In-place sorting algorithms
modified the array according to the
following pattern:

• check if A[i] and A[j] are out of
order

• if so, swap their values
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Abstract View. A comparator is is a PE that takes two values as inputs
and returns the values in sorted order.

• comp(x,y) = (min
{
x,y

}
,max

{
x,y

}
)

• all array modifications of INSERTIONSORT can be performed by
comparators

Question. Which comparator operations of INSERTIONSORT can be
performed in parallel (while still ensuring correct output)?
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Comparator Networks
Visual Representation.

• Inputs/indices are represented by wires (horizontal lines)
• Comparators are vertical line segments between wires

• interpretation: wire between wire i and j performs comp to indices
i and j input

• Execution: Scan diagram from left to right and apply comparators
in order they are encountered

Example. Consider the following comparator network on 4 wires.
What is the output on input [4,3,2,1]?

0

1

2

3
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Sorting Algorithms to Networks
Consider INSERTIONSORT on
inputs of size 5. What are the
(possible) comparator operations
performed by the algorithm?

• Which comparator operations
could be performed in
parallel?

1: procedure INSERTIONSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: j ← i
4: while j > 0 and a[j] < a[j−1] do
5: SWAP(a, j, j−1)
6: j ← j−1
7: end while
8: end for
9: end procedure
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Sorting Network Terminology
Definitions.

• A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

• A comparator network is a sorting network if for all wire inputs,
the resulting outputs are sorted.

• The depth of a comparator network is the maximum number of
comparators touched on any path from input to output
(including crossed comparators).
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Definitions.

• A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

• A comparator network is a sorting network if for all wire inputs,
the resulting outputs are sorted.

• The depth of a comparator network is the maximum number of
comparators touched on any path from input to output
(including crossed comparators).

Sorting networks and parallel algorithms.
• Each comparator is a process element
• The depth is the span (running time) of the network
• The work is the number of comparators

Question. What is the smallest/shallowest sorting network for a given
input size?

• Optimal size sorting networks are only known for up to 12 inputs
• Optimal depth is only known up to 18 inputs
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Some Optimal Sorting Networks
Example. n = 4 wires. What is the depth?

0

1

2

3
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Some Optimal Sorting Networks

Example. n = 5 wires. What is the depth?

0

1

2

3

4
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Next Time
• More parallel sorting!

• Parallel searching!
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Scratch Notes
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