Lecture 17: Error Correction; Parallel Algorithms

COMP526: Efficient Algorithms

Updated: November 28, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Programming Assignment 2 posted
 - Due 29 November
- 2. No Quiz This Week!
- 3. Attendance Code:

Meeting Goals

- 1. Finish discussion error correcting codes
 - · Parity checking
 - · Hamming Codes
- 2. Introduce parallel algorithms

Error Correcting Codes

From Last Time

Communcation Model.

- Goal: send a text S ∈ {0,1}*
 (bitstream) across a communication channel
- Any bit transmitted through the channel might flip
 - $0 \mapsto 1 \text{ or } 1 \mapsto 0$
 - no erasures or insertions
- To cope with errors:
 - compute and send an encoded bitstream C(S)
 - receiver decodes C to get S

Block Codes. Assumptions

- Messages consists of fixed sized blocks
 - k = message length
 m ∈ {0, 1
- Encode each message separate as $C(m) \in \{0, 1\}^n$
 - C(m) is **codeword** for m
- *n* is the **block length**



Requirements for Detecting and Correcting

Detecting Requirement. Suppose C can detect errors of flipping up to *b* bits. Then *C* has distance $d \ge b + 1$. # bits on which x y (codewords) differ Reason: codowards b bits fliped Bob receives y sends

Requirements for Detecting and Correcting

Detecting Requirement. Suppose *C* can detect errors of flipping up to *b* bits. Then *C* has distance $d \ge b+1$.

Correcting Requirement. Suppose C can correct errors of flipping up Codemord to b bits. Then C has distance $d \ge 2b + 1$ General Strategy received codeword) closest Pt to Z correct decoding

Question. For what values of *n*, *k*, *d* is it possible to have a block code - min dist. between code words of distance d?

Question. For what values of n, k, d is it possible to have a block code line of distance d?

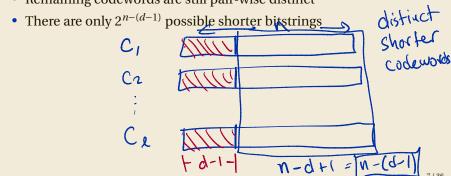
Singleton Bound. $2^k \le 2^{n-(d-1)}$, hence $n \ge k+d-1$

N 2 K+3-1 = K+2 eq Great 2 flipped bits d = 3

Question. For what values of n, k, d is it possible to have a block code of distance d?

Singleton Bound $2^k \le 2^{n-(d-1)}$ hence $n \ge k+d-1$ **Proof sketch.**

- Consider the deleting the first d-1 bits of each codeword.
- Remaining codewords are still pair-wise distinct



Question. For what values of n, k, d is it possible to have a block code of distance d?

Singleton Bound.
$$2^k \le 2^{n-(d-1)}$$
, hence $n \ge k+d-1$

Hamming bound. $2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} \binom{n}{f}$.

The choose of the choice of subscission f is the content of site f in the choice of site f is the choice of the choice of site f .

The choose of the choice of the choice

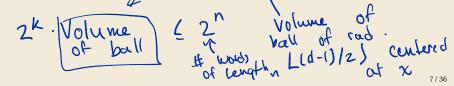
Question. For what values of n, k, d is it possible to have a block code of distance d?

Singleton Bound.
$$2^k \le 2^{n-(d-1)}$$
, hence $n \ge k+d-1$

Hamming bound. $2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}$.

Proof sketch.

- Codewords must be at distance d away
- Thus balls centered at codewords of radius $\lfloor (d-1)/2 \rfloor$ must be disjoint
- Number of balls \times *volume* of each ball must be at most 2^n



Question. For what values of n, k, d is it possible to have a block code of distance d?

Singleton Bound. $2^k \le 2^{n-(d-1)}$, hence $n \ge k+d-1$

Hamming bound. $2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}$.

Question. These are *im*possibility results. What is possible?

Error Detection & Correction

Question. How can we detect a single error?

Question. How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

Question. How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

Idea. Form C by adding an extra bit to message m that encodes the parity of m

• the extra bit is called a parity bit
• which strings are valid codewords?

O | | O O | | O O | | D O | | D O | | D O | | D O | D

Question. How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

Idea. Form *C* by adding an extra bit to message *m* that encodes the parity of *m*

- the extra bit is called a parity bit
- · which strings are valid codewords?
 - the parity of valid codewords is always

Small Example. Consider k = 2, so that n = 3 with parity bits.

• Messages {00,01,10,11}

Small Example. Consider k = 2, so that n = 3 with parity bits.

- Messages (00,01,10,11)
- $\mathscr{C} = \{000, 011, 101, 110$

Small Example. Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$

Mamming is the dist.

min distance between any pair of code words

PollEverywhere Question

Consider the code C with k = 2 bit messages and one parity bit. What is the distance d of C?

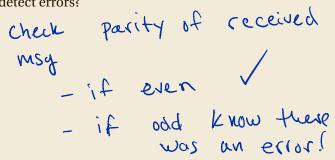
pollev.com/comp526

Small Example. Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$
- What is the distance of *C*?

Small Example. Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$
- What is the distance of C? $\frac{1}{2}$
- How do we detect errors?



Suppose we want to **correct** a single error. How is this even possible?

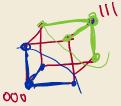
Suppose we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- · How do we decode a message?

received
decode
010 -> 000
majority
vote of

Suppose we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?
- · View on Hamming cube!



Suppose we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?

Inefficiency. To correct a single error, we must **triple** the length of the message?!

Suppose we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- · How do we decode a message?

Inefficiency. To correct a single error, we must **triple** the length of the message?!

A Puzzle. How can we correct a single error more efficiently?

- Don't need to duplicate every bit!
- Idea: use parity checks on *parts* of the string to identify the index where error occurred!

Hamming Codes

How to Locate Errors?

Idea. Use several parity bits!

- Each parity bit detects an error on a part of the input
- Choose parts so that parity checks uniquely specify location of error
- Error may be in one of the parity bits itself!

How to Locate Errors?

Idea. Use several parity bits!

- Each parity bit detects an error on a part of the input
- Choose parts so that parity checks uniquely specify location of error
- Error may be in one of the parity bits itself!

Binary Trick. Blocks of size
$$n = 7$$
 bits: $B = B_7 B_6 B_5 B_4 B_3 B_2 B_1$

- Write indices in binary
 - <u>111,</u> 110, 101, 100, 011, <u>010, 001</u>
- Have a parity check for each bit of the index where the error could have occurred
 - was the error at an index whose *j*th bit is 1?
 - 111, 110, 101, 100, 011, 010, 001 j = 1
 - 111, 110, 101, 100, 011, 010, 001 (-) = 2
 - 111, 110, 101, 100, 011, 010, 001) 7 3

How to Locate Errors?

Idea. Use several parity bits!

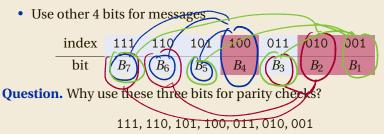
- Each parity bit detects an error on a part of the input
- Choose parts so that parity checks uniquely specify location of error
- Error may be in one of the parity bits itself!

Binary Trick. Blocks of size
$$n = 7$$
 bits: $B = B_7 B_6 B_5 B_4 B_3 B_2 B_1$

- Write indices in binary
 - 111, 110, 101, 100, 011, 010, 001
- Have a parity check for each bit of the index where the error could have occurred
 - was the error at an index whose jth bit is 1?
 - (11) 110, (01) 100, (01) 010, (01)
 - 111, 110, 101, 100, 011, 010, 001
 - 111, 110, 101, 100, 011, 010, 001
- Question. Where do we store parity/message bits?

(7, 4) Hamming Code

Parity Values. Store parity bits at indices $j = 100_2, 010_2, 001_2$.



(7, 4) Hamming Code

Parity Values. Store parity bits at indices $j = 100_2, 010_2, 001_2$.

 Use other 4 bits for messages index 111 110 101 100 011 001 B_6 B_5 B_3 bit B_7 B_4 B_2 B_1

Question. Why use these three bits for parity checks?

- They are independent of the other parity checks!
 - 111, 110, 101, 100, 011, 010, 001
 - 111, 110, 101, 100, 011, 010, 00
 - 111, 110, 101 100 011, 010, 001

Encoding (7, 4) Hamming Code

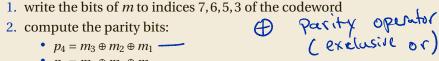
Procedure. To encode $m = m_3 m_2 m_1 m_0$:

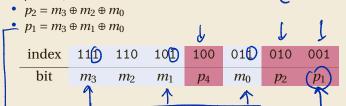
1. write the bits of m to indices 7, 6, 5, 3 of the codeword

index	111	110	101	100	011	010	001
bit	m_3	m_2	m_1		m_0		

Encoding (7, 4) Hamming Code

Procedure. To encode $m = m_3 m_2 m_1 m_0$:





$$0 \oplus 0 = 0$$

 $0 \oplus 1 = 0$
 $0 \oplus 1 = 1$

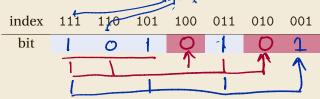
Encoding (7, 4) Hamming Code

Procedure. To encode $m = m_3 m_2 m_1 m_0$:

- 1. write the bits of *m* to indices 7, 6, 5, 3 of the codeword
- 2. compute the parity bits:
 - $p_4 = m_3 \oplus m_2 \oplus m_1$
 - $p_2 = m_3 \oplus m_2 \oplus m_0 \leftarrow$
 - $p_1 = m_3 \oplus m_1 \oplus m_0$

index							
bit	m_3	m_2	m_1	p_4	m_0	p_2	p_1

Example. Encode the message m = 1011



Recall. Code distance is the minimum Hamming distance between any two codewords.

Recall. Code distance is the minimum Hamming distance between any two codewords.

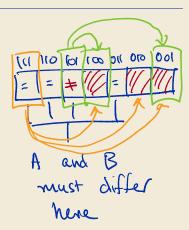
PollEverywhere Question

What is the code distance of the (7,4) Hamming code?

pollev.com/comp526

Recall. Code distance is the minimum Hamming distance between any two <u>codewor</u>ds.

- Suppose $A = A_7 A_6 A_5 A_4 A_3 A_2 A_1$ and $B = B_7 B_6 B_5 B_4 B_3 B_2 B_1$ are codewords
- A_4, A_2, A_1 determined from other values (similarly for B)
- A and B differ on at least one index $7 = 111_2, 6 = 110_2, 5 = 101_2, 3 = 011_2$
- If *A* and *B* differ on exactly one message bit, then two parity bits differ as well
- Check: if A and B differ on two message bits, then at least one parity bit differs as well!



Recall. Code distance is the minimum Hamming distance between any two codewords.

- Suppose $A = A_7 A_6 A_5 A_4 A_3 A_2 A_1$ and $B = B_7 B_6 B_5 B_4 B_3 B_2 B_1$ are codewords
- A_4, A_2, A_1 determined from other values (similarly for B)
- A and B differ on at least one index $7 = 111_2, 6 = 110_2, 5 = 101_2, 3 = 011_2$
- If A and B differ on exactly one message bit, then two parity bits differ as well
- Check: if A and B differ on two message bits, then at least one parity bit differs as well!

Note. Code distance 3 implies correcting 1 error *might* be possible...

Decoding (7, 4) Hamming Code

Procedure. Given received message $B = B_7 B_6 B_5 B_4 B_3 B_2 B_1$:

- 1. Compute the parity bits
 - $p_{4} = B_{7} \oplus B_{6} \oplus B_{5} \oplus B_{4} \leftarrow p_{2} = B_{7} \oplus B_{6} \oplus B_{3} \oplus B_{2} \leftarrow p_{1} = B_{7} \oplus B_{5} \oplus B_{3} \oplus B_{1} \leftarrow p_{1} = B_{7} \oplus B_{5} \oplus B_{3} \oplus B_{1} \leftarrow p_{2}$
- Question: if B is a valid codeword, then what we
- \rightarrow 2. Form index *j* with binary representation $p_4p_2p_1$
- \rightarrow 3. If $j \neq 0$, form B' by flipping B_i to $1 B_i$
 - 4. Decode the message $m = B_7' B_6' B_5' B_3'$

Example. Decode the message B = 1110

All evaluate to zero!

 $\chi \theta \chi \equiv 0$

Decoding (7, 4) Hamming Code

Procedure. Given received message $B = B_7 B_6 B_5 B_4 B_3 B_2 B_1$:

- 1. Compute the parity bits
 - $p_4 = B_7 \oplus B_6 \oplus B_5 \oplus B_4$
 - $p_2 = B_7 \oplus B_6 \oplus B_3 \oplus B_2$
 - $p_1 = B_7 \oplus B_5 \oplus B_3 \oplus B_1$
- 2. Form index j with binary representation $p_4p_2p_1$
- 3. If $j \neq 0$, form B' by flipping B_j to $1 B_j$
- 4. Decode the message $m = B_7' B_6' B_5' B_3'$

Example. Decode the message B = 1110101

• m = 1011

Note. If j = 0, then B is a valid codeword. If $j \neq 0$, then B' is a valid codeword at distance 1 from B.

Error Correction Prospectus

(7, 4) Hamming Codes are perfect:

• *m*, *n*, and *d* match the Hamming *lower bound* for block codes

Error Correction Prospectus

(7, 4) Hamming Codes are perfect:

• m, n, and d match the Hamming lower bound for block codes

Generalizations.

- General Hamming codes:
 - Codeword length $n = 2^{\ell} 1$ for any ℓ
 - ℓ parity bits
 - Message length $2^{\ell} \ell 1$ message length \longrightarrow
 - All are perfect!

$$7 = 2^{3} - 1$$

$$4 = 2^{3} - 1 - 3$$

cade words

Error Correction Prospectus

(7, 4) Hamming Codes are perfect:

• *m*, *n*, and *d* match the Hamming *lower bound* for block codes

Generalizations.

- General Hamming codes:
 - Codeword length $n = 2^{\ell} 1$ for any ℓ
 - ℓ parity bits
 - Message length $2^{\ell} \ell 1$ message length
 - All are perfect!
- Other optimal values of *m*, *n*, *d* are generally not known
 - many efficient schemes use algebraic constructions
 - almost all randomly chosen codes are good(!)
 - · ongoing research!

Algorithms

Parallel

Improving Technology?

Laptop Power.

- My first laptop (ca. 2004)
 - Compaq Presario 2100
 - \$900 new (\$1,500 with inflation)
 - now < \$15 used
- Recent laptop (ca. 2021)
 - Apple MacBook Pro, 2020
 - \$1,400 (\$1,500 with inflation)
 - Now \$800 used

Question. Is my old laptop (in a landfill somewhere) **faster** than my current computer?

Improving Technology?

Laptop Power.

- My first laptop (ca. 2004)
 - Compaq Presario 2100
 - \$900 new (\$1,500 with inflation)
 - now < \$15 used
- Recent laptop (ca. 2021)
 - Apple MacBook Pro, 2020
 - \$1,400 (\$1,500 with inflation)
 - Now \$800 used

PollEverywhere Question

How much *faster* is a new mid/high range laptop computer today than a comparable model from 20 years ago?

pollev.com/comp526

Question. Is my old laptop (in a landfill somewhere) **faster** than my current computer?

Improving Technology?

Laptop Power.

- My first laptop (ca. 2004)
 - Compaq Presario 2100
 - \$900 new (\$1,500 with inflation)
 - now < \$15 used
 - Intel Celeron CPU 1.6 GHz
- Recent laptop (ca. 2021)
 - Apple MacBook Pro, 2020
 - \$1,400 (\$1,500 with inflation)
 - Now \$800 used
 - Intel Core i5 CPU, 1.4 GHz

Question. Is my old laptop (in a landfill somewhere) **faster** than my current computer?

Processor Speed is Not Increasing

Year	Transistors	Clock speed	CPU model
1979	30 k	5 MHz 🗲	8808
1985	300 k	20 MHz	386
1989	1 M	20 MHz	486
1995	6 M	200 MHz	Pentium Pro
2000	40 M	2 000 MHz	Pentium 4
2005	100 M	3 000 MHz	2-core Pentium D
2008	700 M	3 000 MHz	8-core Nehalem
2014	6 B	2 000 MHz	18-core Haswell
2017	20 B	3 000 MHz	32-core AMD Epyc
2019	40 B	3 000 MHz	64-core AMD Rome

Processor Speed is Not Increasing

Year	Transistors	Clock speed	CPU model	
1979	30 k	5 MHz	8808	
1985	300 k	20 MHz	386	
1989	1 M	20 MHz	486	
1995	6 M	200 MHz	Pentium Pro	
2000	40 M	2 000 MHz	Pentium 4	
2005	100 M	3 000 MHz	🔾-core Pentium D 🗲	
2008	700 M	3 000 MHz	(8) core Nehalem	
2014	6 B	2 000 MHz	(18)-core Haswell	
2017	20 B	3 000 MHz	32-core AMD Epyc	
2019	40 B	3 000 MHz	64 core AMD Rome	

But the number of transistors is growing exponentially!

Measuring Performance

- Processor speed is the number processor clock cycles per second
- Latency of an operation is the time from when the operation starts to when it completes
 - speed determines latency of individual operations
 - speed bounded by physical constraints (e.g. speed of light)

Measuring Performance

- Processor speed is the number processor clock cycles per second
- Latency of an operation is the time from when the operation starts to when it completes
 - speed determines latency of individual operations
 - speed bounded by physical constraints (e.g. speed of light)
- Throughput is the number of (useful) operations performed each second

Measuring Performance

- Processor speed is the number processor clock cycles per second
- Latency of an operation is the time from when the operation starts to when it completes
 - speed determines latency of individual operations
 - speed bounded by physical constraints (e.g. speed of light)
- Throughput is the number of (useful) operations performed each second

Speed ≈ **Throughput?**

- U of L graduates about 6,000 student each year
- ⇒ each degree takes 1/6,000 year (≈ 88 minutes)

Measuring Performance

- Processor speed is the number processor clock cycles per second
- Latency of an operation is the time from when the operation starts to when it completes
 - speed determines latency of individual operations
 - speed bounded by physical constraints (e.g. speed of light)
- Throughput is the number of (useful) operations performed each second

Speed ≈ **Throughput?**

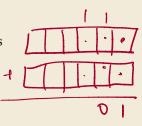
- U of L graduates about 6,000 student each year
- ⇒ each degree takes 1/6,000 year (≈ 88 minutes)
- WRONG!!! ~ 3 YYS
 - how long does a degree take?
 - how does U of L have so many graduates?

Parallelism is the ability to perform multiple operations simultaneously

Parallelism is the ability to perform multiple operations simultaneously

Examples of parallelism in computers

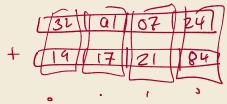
• Bit level parallelism: adding 32-bit numbers



Parallelism is the ability to perform multiple operations simultaneously

Examples of parallelism in computers

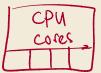
- Bit level parallelism: adding 32-bit numbers
- Single Instruction Multiple Data (SIMD) parallelism:
 - *vector* operations in a GPU ←



Parallelism is the ability to perform multiple operations simultaneously

Examples of parallelism in computers

- · Bit level parallelism: adding 32-bit numbers
- Single Instruction Multiple Data (SIMD) parallelism: 🔽
 - vector operations in a GPU
- Multiple Instruction Multiple Data (MIMD) parallelism:
 - multicore CPUs

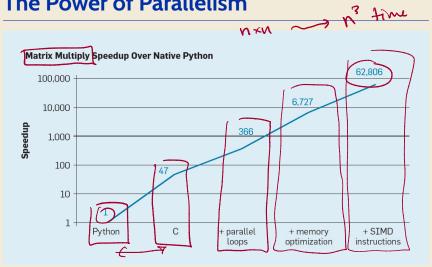


Parallelism is the ability to perform multiple operations simultaneously

Examples of parallelism in computers

- Bit level parallelism: adding 32-bit numbers
- Single Instruction Multiple Data (SIMD) parallelism:
 - vector operations in a GPU
- Multiple Instruction Multiple Data (MIMD) parallelism:
 - multicore CPUs
- Distributed/networked computing
 - cluster computing, "cloud" computing, server farms

The Power of Parallelism



Restricted Model: SIMD instructions

- Program = sequence of instructions to be performed
- If *same* operation is performed on multiple data, operations can be performed simultaneously
- Example: A,B,C acrays length M

 for i = 0 to n-1:

 C[i] = A[i] + B[i]

 Single STMD

 Operation

Restricted Model: SIMD instructions

- Program = sequence of instructions to be performed
- If same operation is performed on multiple data, operations can be performed simultaneously
- Example:

```
for i = 0 to n-1:

C[i] = A[i] + B[i]
```

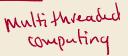
Restricted Model: SIMD instructions

- Program = sequence of instructions to be performed
- If *same* operation is performed on multiple data, operations cap be performed simultaneously
- Example:

for
$$i = 0$$
 to $n-1$:
 $C[i] = A[i] + B[i]$

General Model: PRAM (Parallel RAM)

- Program can spawn processes/processing elements (PEs) that run in parallel
 - · each process is like its own program
- · Processes have shared memory



Restricted Model: SIMD instructions

- Program = sequence of instructions to be performed
- If same operation is performed on multiple data, operations can be performed simultaneously
- Example:

```
for i = 0 to n-1:

C[i] = A[i] + B[i]
```

General Model: PRAM (Parallel RAM)

- Program can spawn processes/processing elements (PEs) that run in parallel
 - each process is like its own program
- Processes have shared memory

Warning. PRAM programs can be *incredibly subtle* to reason

Measuring PRAM Efficiency

Main cost metrics

- space: the total amount of accessed memory
- time: the number of steps until all processes terminate
 - also known as depth or span
- work: total number of instructions executed by all processes

Measuring PRAM Efficiency

Main cost metrics

- space: the total amount of accessed memory
- time: the number of steps until all processes terminate
 - also known as depth or span
- work: total number of instructions executed by all processes

Goal:

- minimal span (= time)
- work is (asymptotically) no worse than the best sequential algorithm
 - called work-efficient algorithms

Idealization. The PRAM model does not limit the number of possible PEs (processing elements)

 "multithreaded" computing allows generation of unlimited threads

Idealization. The PRAM model does not limit the number of possible PEs (processing elements)

 "multithreaded" computing allows generation of unlimited threads

Reality. More threads does not magically speed up computation

- hardware limits the amount of parallel computation
 - e.g. limited to number of cores

Idealization. The PRAM model does not limit the number of possible PEs (processing elements)

 "multithreaded" computing allows generation of unlimited threads

Reality. More threads does not magically speed up computation

- hardware limits the amount of parallel computation
 - e.g. limited to number of cores

Middle Ground (Brent's Theorem). If an algorithm has span T and work W for an arbitrary number of processors, then the algorithm can be run on a PRAM with p PEs in time O(T + W/p) using work W.

Idealization. The PRAM model does not limit the number of possible PEs (processing elements)

 "multithreaded" computing allows generation of unlimited threads

Reality. More threads does not magically speed up computation

- hardware limits the amount of parallel computation
 - e.g. limited to number of cores

Middle Ground (Brent's Theorem). If an algorithm has span T and work W for an arbitrary number of processors, then the algorithm can be run on a PRAM with p PEs in time O(T + W/p) using work W.

 Idea: schedule parallel steps in a "round-robin" fashion on the p PEs.

Enough Generalities!

Parallel Algorithms

- Sorting
 - Sorting Networks (SIMD)
 - sorting short lists
 - Parallel MergeSort
 - · sorting long lists
- Searching

Sorting Networks

Recall. In-place sorting algorithms modified the array according to the following pattern:

- check if A[i] and A[j] are out of order
- if so, swap their values

Recall. In-place sorting algorithms modified the array according to the 1: **procedure** INSERTIONSORT(a, n) following pattern: 2: **for** i = 1, 2, ..., n-1 **do**

- check if A[i] and A[j] are out of order
- if so, swap their values

Example. INSERTIONSORT

```
1: procedure INSERTIONSORT(a, n)
2: for i = 1, 2, ..., n - 1 do
3: j \leftarrow i
4: while j > 0 and a[j] < a[j - 1] do
5: SWAP(a, j, j - 1)
6: j \leftarrow j - 1
7: end while
8: end for
9: end procedure
```

```
Recall. In-place sorting algorithms
modified the array according to the 1: procedure InsertionSort(a, n)
                                                 for i = 1, 2, ..., n-1 do
following pattern:
                                           3:
                                                    i \leftarrow i
  • check if A[i] and A[j] are out of
                                                    while j > 0 and a[j] < a[j-1] do
     order
                                           5:
                                                        SWAP(a, j, j-1)
                                                       i \leftarrow i - 1
                                           6:

    if so, swap their values

                                                    end while
Example. INSERTIONSORT
                                           8:
                                                 end for
                                           9: end procedure
```

Abstract View. A **comparator** is is a PE that takes two values as inputs and returns the values in sorted order.

- $\operatorname{comp}(x, y) = (\min\{x, y\}, \max\{x, y\})$
- all array modifications of INSERTIONSORT can be performed by comparators

```
Recall. In-place sorting algorithms
modified the array according to the 1: procedure INSERTIONSORT(a, n)
                                                 for i = 1, 2, ..., n-1 do
following pattern:
                                           3:
                                                    i \leftarrow i
  • check if A[i] and A[j] are out of
                                                    while j > 0 and a[j] < a[j-1] do
     order
                                           5:
                                                       SWAP(a, j, j-1)
                                                       j \leftarrow j - 1
                                           6:

    if so, swap their values

                                                    end while
Example. INSERTIONSORT
                                           8:
                                                 end for
                                           9: end procedure
```

Abstract View. A **comparator** is is a PE that takes two values as inputs and returns the values in sorted order.

- $comp(x, y) = (min\{x, y\}, max\{x, y\})$
- all array modifications of INSERTIONSORT can be performed by comparators

Question. Which comparator operations of INSERTIONSORT can be performed in parallel (while still ensuring correct output)?

Comparator Networks

Visual Representation.

- Inputs/indices are represented by wires (horizontal lines)
- Comparators are vertical line segments between wires
 - interpretation: wire between wire *i* and *j* performs comp to indices *i* and *j* input
- Execution: Scan diagram from left to right and apply comparators in order they are encountered

Comparator Networks

Visual Representation.

- Inputs/indices are represented by wires (horizontal lines)
- Comparators are vertical line segments between wires
 - interpretation: wire between wire i and j performs comp to indices i and j input
- Execution: Scan diagram from left to right and apply comparators in order they are encountered

Example. Consider the following comparator network on 4 wires. What is the output on input [4,3,2,1]?

Sorting Algorithms to Networks

Consider INSERTIONSORT on inputs of size 5. What are the (possible) comparator operations performed by the algorithm?

 Which comparator operations could be performed in parallel?

```
1: procedure INSERTIONSORT(a, n)
2:
       for i = 1, 2, ..., n-1 do
3:
          i \leftarrow i
4:
           while j > 0 and a[j] < a[j-1] do
5:
              SWAP(a, j, j-1)
6:
              j \leftarrow j - 1
7:
           end while
       end for
8:
9: end procedure
```

Definitions.

 A comparator network is defined by a set of wires and a sequence of comparators (left to right).

Definitions.

- A comparator network is defined by a set of wires and a sequence of comparators (left to right).
- A comparator network is a **sorting network** if for all wire inputs, the resulting outputs are sorted.

Definitions.

- A comparator network is defined by a set of wires and a sequence of comparators (left to right).
- A comparator network is a sorting network if for all wire inputs, the resulting outputs are sorted.
- The depth of a comparator network is the maximum number of comparators touched on any path from input to output (including crossed comparators).

Definitions.

- A comparator network is defined by a set of wires and a sequence of comparators (left to right).
- A comparator network is a **sorting network** if for all wire inputs, the resulting outputs are sorted.
- The depth of a comparator network is the maximum number of comparators touched on any path from input to output (including crossed comparators).

Sorting networks and parallel algorithms.

- · Each comparator is a process element
- The depth is the span (running time) of the network
- The work is the number of comparators

Definitions.

- A comparator network is defined by a set of wires and a sequence of comparators (left to right).
- A comparator network is a sorting network if for all wire inputs, the resulting outputs are sorted.
- The depth of a comparator network is the maximum number of comparators touched on any path from input to output (including crossed comparators).

Sorting networks and parallel algorithms.

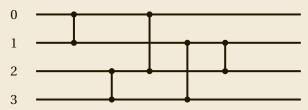
- · Each comparator is a process element
- The depth is the span (running time) of the network
- · The work is the number of comparators

Question. What is the smallest/shallowest sorting network for a given input size?

- · Optimal size sorting networks are only known for up to 12 inputs
- Optimal depth is only known up to 18 inputs

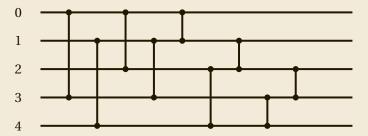
Some Optimal Sorting Networks

Example. n = 4 wires. What is the depth?



Some Optimal Sorting Networks

Example. n = 5 wires. What is the depth?



Next Time

- More parallel sorting!
- · Parallel searching!

Scratch Notes