# **Lecture 16: Error Correcting Codes**

**COMP526: Efficient Algorithms** 

Updated: November 26, 2024

Will Rosenbaum University of Liverpool

# **Announcements**

- 1. Programming Assignment 2 posted
  - Due 29 November
- 2. No Quiz This Week!
- 3. Attendance Code:

# **Meeting Goals**

- 1. Finish discussion of data compression
  - Discuss Burrows-Wheeler inverse analysis
  - Recap of data compression
- 2. Give some remarks on Programming Assignment 2
- 3. Mini-unit on error correcting codes
  - Introduce error correcting codes
  - Define block codes and code distance
  - Prove lower bounds for error detection and correction
  - Introduce Hamming codes

### From last time.

- 1. Start with an input string *S* 
  - S = banana\$

banana \$

### From last time.

- 1. Start with an input string *S* 
  - S = banana\$
- 2. Form all cyclic shifts of *S*

```
n a $ b
а
  n
        a $ b
               a
n
       $ b a
а
  n
       b a
             n
n
  $ b
       a n a
a
$
  b
     a
        n
           a
             n
```

### From last time.

- 1. Start with an input string *S* 
  - S = banana\$
- 2. Form all cyclic shifts of S
- 3. Sort the cyclic shifts alphabetically

```
n a $ b
а
  n
        a $ b
n
  a
       $ b a
а
  n
       b a
             n
n
  $ Ъ
a
       a n
             a
$
  b
        n
           a
             n
```

| \$ | b  | a  | n  | a  | n  | a  |
|----|----|----|----|----|----|----|
| a  | \$ | b  | a  | n  | a  | n  |
| a  | n  | a  | \$ | b  | a  | n  |
| a  | n  | a  | n  | a  | \$ | b  |
| b  | a  | n  | a  | n  | a  | \$ |
| n  | a  | n  | a  | \$ | b  | a  |
| n  | a  | \$ | b  | a  | n  | a  |

### From last time.

- 1. Start with an input string *S* 
  - S = banana\$
- 2. Form all cyclic shifts of S
- 3. Sort the cyclic shifts alphabetically
- 4. Return the last column
  - B = annb\$aa

| b  | a  | n  | a  | n  | a  | \$ |  |
|----|----|----|----|----|----|----|--|
| a  | n  | a  | n  | a  | \$ | b  |  |
| n  | a  | n  | a  | \$ | b  | a  |  |
| a  | n  | a  | \$ | b  | a  | n  |  |
| n  | a  | \$ | b  | a  | n  | a  |  |
| a  | \$ | b  | a  | n  | a  | n  |  |
| \$ | b  | а  | n  | а  | n  | а  |  |

| \$ | b  | a  | n  | a  | n  | a  |
|----|----|----|----|----|----|----|
| a  | \$ | b  | a  | n  | a  | n  |
| a  | n  | a  | \$ | b  | a  | n  |
| a  | n  | a  | n  | a  | \$ | b  |
| b  | a  | n  | a  | n  | a  | \$ |
| n  | a  | n  | a  | \$ | b  | a  |
| n  | a  | \$ | b  | a  | n  | a  |

### From last time.

- 1. Start with an input string *S* 
  - S = banana\$
- 2. Form all cyclic shifts of *S*
- 3. Sort the cyclic shifts alphabetically
- 4. Return the last **column** 
  - B = annb\$aa

### **Claim.** This process is reversible

• Given *B*, we can find the original input *S*.

### 1. Form character-index pairs

- (a 0)
- (n 1)
- (n 2)
- (b 3)
- (\$ 4)
- (a 5)
- (a 6)

- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character

| (a  | 0) | 0 | (\$ | 4) |
|-----|----|---|-----|----|
| (n  | 1) | 1 | (a  | 0) |
| (n  | 2) | 2 | (a  | 5) |
| (b  | 3) | 3 | (a  | 6) |
| (\$ | 4) | 4 | (b  | 3) |
| (a  | 5) | 5 | (n  | 1) |
| (a  | 6) | 6 | (n  | 2) |

- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character
- 3. Starting with \$, use index as (sorted) index of next character
- 4. Repeat

| (a  | 0) | 0 | (\$ | 4) |
|-----|----|---|-----|----|
| (n  | 1) | 1 | (a  | 0) |
| (n  | 2) | 2 | (a  | 5) |
| (b  | 3) | 3 | (a  | 6) |
| (\$ | 4) | 4 | (b  | 3) |
| (a  | 5) | 5 | (n  | 1) |
| (a  | 6) | 6 | (n  | 2) |

- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character
- 3. Starting with \$, use index as (sorted) index of next character
- 4. Repeat

```
($
(a
    0)
                         4)
(n 1)
                     (a
                         0)
(n 2)
                     (a 5)
(b
   3)
                    (a
                         6)
($
   4)
                     (b
                         3)
    5)
                 5
                        1)
(a
                     (n
    6)
                     (n
(a
                         2)
```

**Question.** Why does this work?

- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character
- 3. Starting with \$, use index as (sorted) index of next character
- 4. Repeat

```
(a
     0)
                         ($
                             4)
                                                          n
                                                                       а
     1)
                         (a
                             0)
(n
                                                      b
                                              а
                                                          a
                                                              n
                                                                       n
(n
    2)
                         (a
                             5)
                                                      а
                                                                       n
(b
    3)
                         (a
                             6)
                                                                       b
                                                      a
                                                          n
($
    4)
                         (b
                             3)
                                                                       $
                                                      n
                                                          а
                                                              n
                    5
(a
     5)
                         (n
                              1)
                                                          a
                                                                       a
                                                      n
(a
     6)
                         (n
                              2)
                                              n
                                                  а
                                                          b
                                                                       а
```

### Question. Why does this work?

- c a character in B, consider c's row
- where is c's next character in S?

- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character
- 3. Starting with \$, use index as (sorted) index of next character
- 4. Repeat

```
(a
    0)
                      ($
                          4)
                                                    n
                                                                а
(n 1)
                      (a
                          0)
                                                b
                                                    a
                                                        n
                                                                n
(n 2)
                      (a
                          5)
                                                 a
                                                                n
(b
    3)
                      (a
                          6)
                                                                b
                                                 a
                                                    n
($
    4)
                      (b
                          3)
                                                        n
                                                                $
                                                n
                                                     а
(a
    5)
                      (n
                           1)
                                                                a
                                                n
(a
    6)
                      (n
                           2)
                                         n
                                                     h
                                                                а
```

### Question. Why does this work?

- c a character in B, consider c's row
- where is *c*'s next character in *S*?
- when we sort the last column, c's next character ends up in c's original row!

### **BWT Discussion**

What do we know about the Burrows-Wheeler Transform?

- Running time  $\Theta(n)$ 
  - encoding uses **suffix sorting** (future reference)
  - decoding can be done in  $\Theta(n)$  time with counting sort
  - · decoding is simpler/faster!
- Typically slower than other methods
- Needs access to entire text (or apply to smaller blocks)
- WBT → MTF → RLE → Huffman has great compression!

# **Summary of Compression**

- Huffman Variable-width, single-character (optimal in this case)
  - RLE Variable-width, multiple-character encoding
  - LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
  - MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encoding
  - BWT Block compression method, should be followed by MTF

# **Summary of Compression**

- Huffman Variable-width, single-character (optimal in this case)
  - RLE Variable-width, multiple-character encoding
  - LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
  - MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encoding
  - BWT Block compression method, should be followed by MTF

### Going farther. Compression is an active area of research!

- Improved compression schemes can have immediate impact.
- Hutter Prize 5,000 euro per 1% improvement of compression of a single 1GB English text file (from Wikipedia).
  - made to encourage research in artificial intelligence

# **Summary of Compression**

- Huffman Variable-width, single-character (optimal in this case)
  - RLE Variable-width, multiple-character encoding
  - LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
  - MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encoding
  - BWT Block compression method, should be followed by MTF

### Going farther. Compression is an active area of research!

- Improved compression schemes can have immediate impact.
- Hutter Prize 5,000 euro per 1% improvement of compression of a single 1GB English text file (from Wikipedia).
  - made to encourage research in artificial intelligence
  - what does compression have to do with AI?

# Programming Assignment 2

# **Your Assignment**

### **Three Pieces:**

- B = B[0..20) the correct solutions to the exam
  - · expressed in binary 1 for true, 0 for false
  - · known only to your hacker friend
- M = M[0..10) the message your friend sends you
  - · also expressed in binary
- A = A[0..20) the answers your record for the exam, in binary

### **Two Procedures:**

- Encode the correct exam solutions B to a message M
  - preformed by your hacker friend
- Decode the message M to exam solutions A
  - performed by you during the exam

### **One Goal:** Achieve the maximum *guaranteed* score.

- $20 \max \{d_H(A, B) \mid B \in \{0, 1\}^{20}\}$
- $d_H(A, B)$  is **Hamming distance** = number of indices where solutions differ

# **Two Suggestions**

- 1. Abstract away from algorithms and message semantics
  - messages partition possible exams (B)
  - each message gives one solution A
  - · what should the "parts" have in common?

# **Two Suggestions**

- 1. Abstract away from algorithms and message semantics
  - messages partition possible exams (B)
  - each message gives one solution *A*
  - what should the "parts" have in common?

**Example.** It is possible to guarantee a score of 10 with only *a single bit message!* (How?)

# **Two Suggestions**

- 1. Abstract away from algorithms and message semantics
  - messages partition possible exams (B)
  - each message gives one solution A
  - what should the "parts" have in common?

**Example.** It is possible to guarantee a score of 10 with only *a single bit message!* (How?)

- Consider concrete smaller cases
  - what is special about 20 and 10?
  - try solving the problem by hand for smaller cases: 2 questions,
     1-bit message, etc.

# Error Correcting Codes

### **Implicit Assumptions.** So far:

- Data is never corrupted
- Computer faithfully carries out correct instructions

### **Implicit Assumptions.** So far:

- Data is never corrupted
- Computer faithfully carries out correct instructions

**Question.** Are these assumptions justified?

### **Implicit Assumptions.** So far:

- · Data is never corrupted
- Computer faithfully carries out correct instructions

Question. Are these assumptions justified?

### Weak Point. Communication

- reading from disk
- · writing to shared memory
- sending data between processors
- sending data between cities? countries? continents? planets?

### **Implicit Assumptions.** So far:

- · Data is never corrupted
- Computer faithfully carries out correct instructions

**Question.** Are these assumptions justified?

### Weak Point. Communication

- reading from disk
- · writing to shared memory
- sending data between processors
- sending data between cities? countries? continents? planets?

**Question.** How do we deal with errors in communication?

### **Two Goals:**

- Detect errors in communication
  - Given the sent (intended) message M and received message M', how can we determine if M ≠ M'

### **Two Goals:**

- Detect errors in communication
  - Given the sent (intended) message M and received message M', how can we determine if M ≠ M'
- Correct errors automatically
  - Given received message M', how could we automatically determine the sent message M even if M' ≠ M?

### **Two Goals:**

- Detect errors in communication
  - Given the sent (intended) message M and received message M', how can we determine if M ≠ M'
- Correct errors automatically
  - Given received message M', how could we automatically determine the sent message M even if M' ≠ M?

**Question.** How much noise can the system tolerate?

• Some *redundancy* is necessary.

### **Two Goals:**

- Detect errors in communication
  - Given the sent (intended) message M and received message M', how can we determine if  $M \neq M'$
- Correct errors automatically
  - Given received message M', how could we automatically determine the sent message M even if M' ≠ M?

**Question.** How much noise can the system tolerate?

Some redundancy is necessary.

### PollEverywhere Question

Suppose we wish to send a string *S* of size 100 bits. How many additional bits must we send to **detect** a 1 bit error in the transmitted message?



pollev.com/comp526

### **Two Goals:**

- Detect errors in communication
  - Given the sent (intended) message M and received message M', how can we determine if  $M \neq M'$
- Correct errors automatically
  - Given received message M', how could we automatically determine the sent message M even if M' ≠ M?

**Question.** How much noise can the system tolerate?

Some redundancy is necessary.

### PollEverywhere Question

Suppose we wish to send a string *S* of size 100 bits. How many additional bits must we send to **detect** a 1 bit error in the transmitted message?



pollev.com/comp526

# Modeling Errors and Correction

# **Model & Block Codes**

### **Communcation Model.**

Goal: send a text S ∈ {0, 1}\*
 (bitstream) across a communication channel

## **Model & Block Codes**

#### **Communcation Model.**

- Goal: send a text S ∈ {0,1}\*
   (bitstream) across a communication channel
- Any bit transmitted through the channel might flip
  - $0 \mapsto 1 \text{ or } 1 \mapsto 0$
  - no erasures or insertions

#### **Model & Block Codes**

#### **Communcation Model.**

- Goal: send a text S ∈ {0,1}\*
   (bitstream) across a communication channel
- Any bit transmitted through the channel might flip
  - $0 \mapsto 1 \text{ or } 1 \mapsto 0$
  - no erasures or insertions
- To cope with errors:
  - compute and send an encoded bitstream C(S)
  - receiver decodes C to get S

#### **Model & Block Codes**

#### **Communcation Model.**

- Goal: send a text S ∈ {0,1}\*
   (bitstream) across a communication channel
- Any bit transmitted through the channel might flip
  - $0 \mapsto 1 \text{ or } 1 \mapsto 0$
  - *no* erasures or insertions
- To cope with errors:
  - compute and send an encoded bitstream C(S)
  - receiver decodes C to get S

#### **Block Codes.** Assumptions

- Messages consists of fixed sized blocks
  - k =message length
  - $m \in \{0, 1\}^k$
- Encode each message separate as  $C(m) \in \{0,1\}^n$ 
  - C(m) is **codeword** for m
- *n* is the **block length**

**Definition.** Given two texts  $x, y \in \{0,1\}^n$ , the **Hamming distance**  $d_H(x,y)$  between x and y is the number of indices at which x and y differ.

**Definition.** Given two texts  $x, y \in \{0, 1\}^n$ , the **Hamming distance**  $d_H(x, y)$  between x and y is the number of indices at which x and y differ.

#### PollEverywhere Question

What is the Hamming distance between 1001011001 and 1011010101?



pollev.com/comp526

**Definition.** Given two texts  $x, y \in \{0, 1\}^n$ , the **Hamming distance**  $d_H(x, y)$  between x and y is the number of indices at which x and y differ.

**Geometric View.** Hamming distance allows us to think about binary strings *geometrically*.

- **Hamming cube** of dimension *n* is the set of all bit strings *x* of length *n* 
  - *x* and *y* are neighbors if they differ on exactly one bit

**Definition.** Given two texts  $x, y \in \{0, 1\}^n$ , the **Hamming distance**  $d_H(x, y)$  between x and y is the number of indices at which x and y differ.

**Geometric View.** Hamming distance allows us to think about binary strings *geometrically*.

- **Hamming cube** of dimension *n* is the set of all bit strings *x* of length *n* 
  - x and y are neighbors if they differ on exactly one bit
- **Hamming ball** of radius *d* centered at *x* contains all bitstrings *y* whose Hamming distance from *x* is at most *d*.

**Block Codes, Geometrically.** Recall a block code is a function from k-bit messages to n-bit encoded messages:  $C: \{0,1\}^k \to \{0,1\}^n$ 

• C must be injective

Define  $\mathscr{C} = C(\{0,1\}^k)$  to be the set of all codewords.

**Block Codes, Geometrically.** Recall a block code is a function from k-bit messages to n-bit encoded messages:  $C: \{0,1\}^k \to \{0,1\}^n$ 

• *C* must be *injective* 

Define  $\mathscr{C} = C(\{0,1\}^k)$  to be the set of all codewords.

**Example.** k = 1, n = 3. Define C(b) = (b, b, b).

**Block Codes, Geometrically.** Recall a block code is a function from k-bit messages to n-bit encoded messages:  $C: \{0,1\}^k \to \{0,1\}^n$ 

• *C* must be *injective* 

Define  $\mathscr{C} = C(\{0,1\}^k)$  to be the set of all codewords.

**Example.** k = 1, n = 3. Define C(b) = (b, b, b).

**Decoding.** To decode C(M), find the closest valid codeword x and take  $S = C^{-1}(x)$ .

**Block Codes, Geometrically.** Recall a block code is a function from k-bit messages to n-bit encoded messages:  $C: \{0,1\}^k \to \{0,1\}^n$ 

• C must be injective

Define  $\mathscr{C} = C(\{0,1\}^k)$  to be the set of all codewords.

**Example.** k = 1, n = 3. Define C(b) = (b, b, b).

**Decoding.** To decode C(M), find the closest valid codeword x and take  $S = C^{-1}(x)$ .

**Definition.** The **code distance** of *C* is the minimum (Hamming) distance between any two valid codewords:

•  $d = \min_{x,y \in \mathscr{C}} d_H(x,y)$ 

**Block Codes, Geometrically.** Recall a block code is a function from k-bit messages to n-bit encoded messages:  $C: \{0,1\}^k \to \{0,1\}^n$ 

• C must be injective

Define  $\mathscr{C} = C(\{0,1\}^k)$  to be the set of all codewords.

**Example.** k = 1, n = 3. Define C(b) = (b, b, b).

**Decoding.** To decode C(M), find the closest valid codeword x and take  $S = C^{-1}(x)$ .

**Definition.** The **code distance** of *C* is the minimum (Hamming) distance between any two valid codewords:

•  $d = \min_{x,y \in \mathscr{C}} d_H(x,y)$ 

**Intuition.** Larger code distances should be able to detect/correct more errors.

# **Lower Bounds**

# Requirements for Detecting and Correcting

**Detecting Requirement.** Suppose C can detect errors of flipping up to b bits. Then C has distance  $d \ge b + 1$ .

## Requirements for Detecting and Correcting

**Detecting Requirement.** Suppose C can detect errors of flipping up to b bits. Then C has distance  $d \ge b+1$ .

**Correcting Requirement.** Suppose C can correct errors of flipping up to b bits. Then C has distance  $d \ge 2b + 1$ 

**Question.** For what values of n, k, d is it possible to have a block code of distance d?

**Question.** For what values of *n*, *k*, *d* is it possible to have a block code of distance *d*?

**Singleton Bound.**  $2^k \le 2^{n-(d-1)}$ , hence  $n \ge k+d-1$ 

**Question.** For what values of n, k, d is it possible to have a block code of distance d?

**Singleton Bound.**  $2^k \le 2^{n-(d-1)}$ , hence  $n \ge k+d-1$  **Proof sketch.** 

- Consider the deleting the first d-1 bits of each codeword.
- Remaining codewords are still pair-wise distinct
- There are only  $2^{n-(d-1)}$  possible shorter bitstrings

**Question.** For what values of n, k, d is it possible to have a block code of distance d?

**Singleton Bound.**  $2^k \le 2^{n-(d-1)}$ , hence  $n \ge k+d-1$ 

**Hamming bound.**  $2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}$ .

**Question.** For what values of n, k, d is it possible to have a block code of distance d?

**Singleton Bound.**  $2^k \le 2^{n-(d-1)}$ , hence  $n \ge k+d-1$ 

**Hamming bound.** 
$$2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}$$
.

#### Proof sketch.

- Codewords must be at distance d away
- Thus balls centered at codewords of radius ⌊(*d* − 1)/2⌋ must be disjoint
- Number of balls  $\times$  *volume* of each ball must be at most  $2^n$

**Question.** For what values of n, k, d is it possible to have a block code of distance d?

**Singleton Bound.**  $2^k \le 2^{n-(d-1)}$ , hence  $n \ge k+d-1$ 

**Hamming bound.**  $2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}$ .

**Question.** These are *im*possibility results. What is possible?

**Question.** How can we **detect** a single error?

**Question.** How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

**Question.** How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

**Idea.** Form *C* by adding an extra bit to message *m* that encodes the parity of *m* 

- the extra bit is called a parity bit
- which strings are valid codewords?

**Question.** How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

**Idea.** Form *C* by adding an extra bit to message *m* that encodes the parity of *m* 

- the extra bit is called a parity bit
- which strings are valid codewords?
  - the parity of valid codewords is always 1!

**Question.** How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

**Idea.** Form *C* by adding an extra bit to message *m* that encodes the parity of *m* 

- the extra bit is called a parity bit
- which strings are valid codewords?
  - the parity of valid codewords is always 1!

**Example.** k = 2, n = 3. What is d? How do we detect errors?

**Small Example.** Consider k = 2, so that n = 3 with parity bits.

• Messages {00,01,10,11}

**Small Example.** Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$

**Small Example.** Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$

#### PollEverywhere Question

Consider the code C with k = 2 bit messages and one parity bit. What is the distance d of C?



pollev.com/comp526

**Small Example.** Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$
- What is the distance of *C*?

**Small Example.** Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$
- What is the distance of *C*?
- How do we detect errors?

**Suppose** we want to **correct** a single error. How is this even possible?

**Suppose** we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?

**Suppose** we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?
- View on Hamming cube!

**Suppose** we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?

**Inefficiency.** To correct a single error, we must **triple** the length of the message?!

**Suppose** we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?

**Inefficiency.** To correct a single error, we must **triple** the length of the message?!

**A Puzzle.** How can we correct a single error more efficiently?

- Don't need to duplicate every bit!
- Idea: use parity checks on *parts* of the string to identify the index where error occurred!

## **Next Time**

- Finish error correcting codes!
- Start parallel algorithms!

## **Scratch Notes**