		I.																			2		C)	a		ς	-	C	1	1	1									
											J	I		J						G		2	C)	٦		J				4										
0000000	00	0 0 0	0 0	0 0	0	0 0 1	0 0 1	0 0	0 0	0	G	0	0	0 0	0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 il	0 0	0	0 0	0 0	0 (0 0	0 0	0 0	0	0 0	0 0	0	0		0	0	0
1 1 1 1 1 1	11	1	1	1	11	1.1	11	1	1	11	1	11		1	1	11	1.1	11	1	11	11	11	1	11	11	1	11	1.1	N	11	11	11	1	11	1 1	1	1	1.1	11	11	1.1
2 2 🛛 2 2 2 2	2 2 2	222	2 2	22	2	2 2	2 2	2 ?	2	2 2	2	2 2	22	2 2		2 2	2 2	2 2	2 2	22	22	2 2	2	2 2	2 2	2	22	2 2	2 2	2 2	22	2 2	2	2 2	2 2	2	2	2 2	2 2	2 2	22
333333	333	333	33	33	3	3	33	33	33	3	3	33	33	3 3	3 3	3	3 3	3 3	3 3	33	33	33	3	33	33	3	33	33	3 (3 3	33	3 3	3	33	3 3	3	3 :	33	3 3	3 3	3
444444	44	444	4 4	44	44	4 4	4 4	44	44	44	4	4 4	44	4 4	4	4	4 4	4.4	4	44	44	4 4	4	44	4 4	4	44	4 4	4 4	4 4	44	4 4	4	44	4 4	4	4	4	4 4	•	4 4
555555	555	5 5 5	5	5	55	55	5	5	55	55	5		55	5	5	55	5	5 5	i 5	55	55	5 5	5 !	55	5 5	5	55	55	5 5	5 5	55	5 5	i 5	55	5 5	i 5	5 !	55	5 5	i 5	5 5
6666666	5 6	66	66	6 6	66	66	66	66	66	66	6	66	66	6 8	6 6	66	66	6 8	5 6	66	66	6 6	6	66	6 6	6	66	66	6 9	6 6	66	6 6	6	66	6.6	6	6	66	6 8	5 6	66
111111	11	111		77	77	7		11	11	7 7	7	7 7	11	7 1	7	7 7	7	1	17	77	1 1	7 7	7	7 7	77	7	7 7	7 7	7	17	77	17		77		7		7	7 7		77

Lecture 16: Error Correcting Codes

COMP526: Efficient Algorithms

Updated: November 26, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Programming Assignment 2 posted
 - Due 29 November 🗕 this Friday
- 2. No Quiz This Week!
- 3. Attendance Code:

389591

Meeting Goals

- 1. Finish discussion of data compression
 - Discuss Burrows-Wheeler inverse analysis
 - Recap of data compression
- 2. Give some remarks on Programming Assignment 2
- 3. Mini-unit on error correcting codes
 - Introduce error correcting codes
 - Define block codes and code distance
 - Prove lower bounds for error detection and correction
 - · Introduce Hamming codes Thursday

From last time.

1. Start with an input string *S*

From last time.

- 1. Start with an input string *S*
 - S = banana
- 2. Form all cyclic shifts of *S*

b	a	n	a	n	a	\$	
a	n	a	n	a	\$	Ъ	
n	a	n	a	\$	b	a	
a	n	a	\$	b	a	n	
n	a	\$	b	a	n	a	
	\$	b	a	n	a	n	
\$	b	a	n	a	n	a	

From last time.

- 1. Start with an input string *S*
 - S = banana
- 2. Form all cyclic shifts of *S*
- 3. Sort the cyclic shifts alphabetically

rows



From last time.

- 1. Start with an input string *S*
 - S = banana
- 2. Form all cyclic shifts of S
- 3. Sort the cyclic shifts alphabetically
- 4. Return the last **column**
 - B = annb\$aa

b	a	n	a	n	a	\$	
a		a	n			b	
n		n			b	a	
				-			
a	n	a	\$	b	a	n	
n	a	\$	b	a	n	a	
a	\$	b	a	n	a	n	
\$	b	a	n	a	n	a	

\$	b	a	n	a	n	a	
a	\$	b	a	n	a	n	
a	n	a	\$	b	а	n	
a	n	a	n	a	\$	b	l
b	a	n	a	n	a	\$	l
n	a	n	a	\$	b	a	I
n	a	\$	b	a	n a \$ a b n	a	I

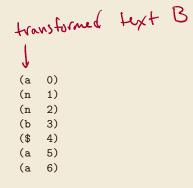
From last time.

- 1. Start with an input string *S*
 - S = banana
- 2. Form all cyclic shifts of *S*
- 3. Sort the cyclic shifts alphabetically
- 4. Return the last **column**
 - B = annb\$aa

Claim. This process is *reversible*

• Given *B*, we can find the original input *S*.

1. Form character-index pairs



- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character

orig index

				ć
(a	0)	0	(\$	4)
(n	1)	1	(a	0)
(n	2)	2	(a	5)
(b	3)	3	(a	6)
(\$	4)	4	(b	3)
(a	5)	5	(n	1)
(a	6)	6	(n	2)

- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character
- 3. Starting with \$, use index as (sorted) index of next character
- 4. Repeat

banana \$

- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character
- 3. Starting with \$, use index as (sorted) index of next character
- 4. Repeat

(a	0)	0	(\$	4)
(n	1)	1	(a	0)
(n	2)	2	(a	5)
(b	3)	3	(a	6)
(\$	4)	4	(b	3)
(a	5)	5	(n	1)
(a	6)	6	(n	2)

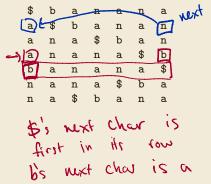
Question. Why does this work?

- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character
- 3. Starting with \$, use index as (sorted) index of next character
- 4. Repeat

(a	0)	0	(\$	4)
(n	1)	1	(a	0)
(n	2)	2	(a	5)
(b	3)	3	(a	6)
(\$	4)	4	(b	3)
(a	5)	5	(n	1)
(a	6)	6	(n	2)

Question. Why does this work?

- *c* a character in *B*, consider *c*'s row
- where is *c*'s next character in *S*?

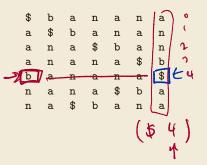


- 1. Form character-index pairs
- 2. Sort pairs stably alphabetically by first character
- 3. Starting with \$, use index as (sorted) index of next character
- 4. Repeat

(a	0)	0	(\$	4)
(n	1)	1	(a	0)
(n	2)	2	(a	5)
(b	3)	3	(a	6)
(\$	4)	4	(b	3)
(a	5)	5	(n	1)
(a	6)	6	(n	2)

Question. Why does this work?

- *c* a character in *B*, consider *c*'s row
- where is *c*'s next character in *S*?
- when we sort the last column, *c*'s next character ends up in *c*'s original row!



BWT Discussion

What do we know about the Burrows-Wheeler Transform?

- Running time O(n) "Naive" alg. O(n² (og n))
 encoding uses suffix sorting (future reference)

 - decoding can be done in $\Theta(n)$ time with counting sort
 - decoding is simpler/faster!
- Typically slower than other methods
- Needs access to entire text (or apply to smaller blocks)
- WBT \rightarrow MTF \rightarrow RLE \rightarrow Huffman has great compression! \leftarrow

Summary of Compression

- Huffman Variable-width, single-character (optimal in this case) RLE Variable-width, multiple-character encoding
- LZW Adaptive, fixed-width, multiple-character encoding
 Augments dictionary with repeated substrings
 - MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF

Summary of Compression

- Huffman Variable-width, single-character (optimal in this case)
 - RLE Variable-width, multiple-character encoding
 - LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
 - MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encodingBWT Block compression method, should be followed by MTF

Going farther. Compression is an active area of research!

- Improved compression schemes can have immediate impact.
- Hutter Prize 5,000 euro per 1% improvement of compression of a single 1GB English text file (from Wikipedia).
 - made to encourage research in artificial intelligence \leftarrow

Summary of Compression

- Huffman Variable-width, single-character (optimal in this case)
 - RLE Variable-width, multiple-character encoding
 - LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
 - MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encodingBWT Block compression method, should be followed by MTF

Going farther. Compression is an active area of research!

- Improved compression schemes can have immediate impact.
- Hutter Prize 5,000 euro per 1% improvement of compression of a single 1GB English text file (from Wikipedia).
 - made to encourage research in artificial intelligence
 - what does compression have to do with AI?

Programming Assignment 2

Your Assignment

Three Pieces:

- B = B[0..20) the correct solutions to the exam
 - expressed in binary 1 for true, 0 for false
 - known only to your hacker friend
- M = M[0..10) the message your friend sends you
 - also expressed in binary
- A = A[0..20) the answers your record for the exam, in binary

Two Procedures:

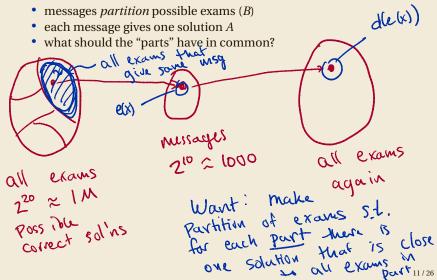
- *Encode* the correct exam solutions *B* to a message *M*
 - preformed by your hacker friend

- One Goal: Achieve the maximum guaranteed score. $20 \max\{d_H(A, B) | B \in \{0, 1\}^{20}\}$ worst score achieved $d_H(A, B)$ is Hamming distance = number of indisolutions differ

Exam answer 011001111 --

Two Suggestions

1. Abstract away from algorithms and message semantics



Two Suggestions

1. Abstract away from algorithms and message semantics

- messages partition possible exams (B)
- each message gives one solution A
- what should the "parts" have in common?

Example. It is possible to guarantee a score of 10 with only *a single bit message!* (How?)

Majority:
Majority:

$$msq 2:$$
 if $\#1s \ge 10$ encode
 $msq 0:$ if $\#0s > 10$ encode
 $rusq 0:$

00

10

Two Suggestions

- 1. Abstract away from algorithms and message semantics
 - messages partition possible exams (B)
 - each message gives one solution A
 - what should the "parts" have in common?

Example. It is possible to guarantee a score of 10 with only *a single bit message!* (How?)

- 2. Consider concrete smaller cases
 - what is special about 20 and 10?
 - try solving the problem by hand for smaller cases: 2 questions, 1-bit message, etc.

Error Correcting Codes

Implicit Assumptions. So far:

- Data is never corrupted
- Computer faithfully carries out correct instructions

Implicit Assumptions. So far:

- Data is never corrupted
- Computer faithfully carries out correct instructions

Question. Are these assumptions justified?

chip

Implicit Assumptions. So far:

- Data is never corrupted
- Computer faithfully carries out correct instructions

Question. Are these assumptions justified? **Weak Point.** Communication

- reading from disk 车
- writing to shared memory 🧹
- sending data between processors
- sending data between cities? countries? continents? planets?

Implicit Assumptions. So far:

- Data is never corrupted
- Computer faithfully carries out correct instructions

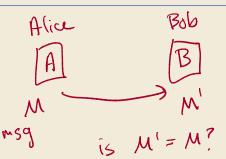
Question. Are these assumptions justified? **Weak Point.** Communication

- reading from disk
- writing to shared memory
- sending data between processors
- sending data between cities? countries? continents? planets?

Question. How do we deal with errors in communication?

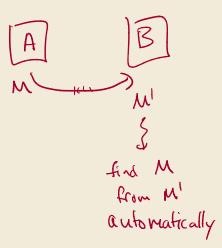
Two Goals:

- **Detect** errors in communication
 - Given the sent (intended) message *M* and received message *M'*, how can we determine if $M \neq M'$



Two Goals:

- **Detect** errors in communication
 - Given the sent (intended) message *M* and received message *M'*, how can we determine if $M \neq M'$
- **Correct** errors automatically
 - Given received message M', how could we *automatically* determine the sent message M even if $M' \neq M$?



Two Goals:

- **Detect** errors in communication
 - Given the sent (intended) message *M* and received message *M'*, how can we determine if $M \neq M'$
- Correct errors automatically
 - Given received message M', how could we *automatically* determine the sent message M even if $M' \neq M$?

Question. How much noise can the system tolerate?

• Some *redundancy* is necessary.

Observation. Carlt do anything w/ unalfied misgs. must add additional info redundancy

Two Goals:

- Detect errors in communication
 - Given the sent (intended) message M and received message M', how can we determine if $M \neq M'$
- Correct errors automatically
 - Given received message M', how could we *automatically* determine the sent message M even if $M' \neq M$?

Question. How much noise can the system tolerate?

• Some *redundancy* is necessary.

PollEverywhere Question

b.b.

Suppose we wish to send a string *S* of size 100 bits. How many additional bits must we send to **detect** a 1 bit error in the transmitted message?

qG

pollev.com/comp526

Two Goals:

- **Detect** errors in communication
 - Given the sent (intended) message *M* and received message *M'*, how can we determine if $M \neq M'$
- **Correct** errors automatically
 - Given received message M', how could we *automatically* determine the sent message M even if $M' \neq M$?

Question. How much noise can the system tolerate?

• Some *redundancy* is necessary.

PollEverywhere Question

Suppose we wish to send a string *S* of size 100 bits. How many additional bits must we send to **contract** a 1 bit error in the transmitted message?

pollev.com/comp526

Modeling Errors and Correction

Model & Block Codes

Communcation Model.

bitstream

• Goal: send a text $S \in \{0,1\}^*$ Own length channel

Model & Block Codes

Communcation Model.

- Goal: send a text S ∈ {0,1}* (bitstream) across a communication channel
- Any bit transmitted through the channel might **flip**
 - $0 \mapsto 1 \text{ or } 1 \mapsto 0$
 - no erasures or insertions

sent 011011000111 L sec'd 011010000101

Model & Block Codes

Communcation Model.

- Goal: send a text S ∈ {0, 1}* (bitstream) across a communication channel
- Any bit transmitted through the channel might **flip**
 - $0 \mapsto 1 \text{ or } 1 \mapsto 0$
 - no erasures or insertions
- To cope with errors:
 - compute and send an encoded bitstream *C*(*S*)
 - receiver decodes C to get S

0110 encoded 00111100 J sunt 01(10100 decoded 0110

Model & Block Codes

Communcation Model.

- Goal: send a text S ∈ {0, 1}* (bitstream) across a communication channel
- Any bit transmitted through the channel might **flip**
 - $0 \mapsto 1 \text{ or } 1 \mapsto 0$
 - no erasures or insertions
- To cope with errors:
 - compute and send an encoded bitstream *C*(*S*)
 - receiver decodes C to get S

Block Codes. Assumptions

- Messages consists of fixed sized blocks
 - k = message length
 - $m \in \{0, 1\}^k$
- Encode each message separate as $C(m) \in \{0, 1\}^n$
 - *C*(*m*) is **codeword** for *m*
- *n* is the **block length**

k

K

16/26

Codeword

encole

Definition. Given two texts $x, y \in \{0, 1\}^n$, the **Hamming distance** $d_H(x, y)$ between *x* and *y* is the number of indices at which *x* and *y* differ.

Definition. Given two texts $x, y \in \{0, 1\}^n$, the **Hamming distance** $d_H(x, y)$ between *x* and *y* is the number of indices at which *x* and *y* differ.

2 = dH(x,y)

PollEverywhere Question

What is the Hamming distance between 1001011001 and 1011010101?

pollev.com/comp526

Definition. Given two texts $x, y \in \{0, 1\}^n$, the **Hamming distance** $d_H(x, y)$ between *x* and *y* is the number of indices at which *x* and *y* differ.

Geometric View. Hamming distance allows us to think about binary strings *geometrically*.

$$=3: \begin{array}{c} 10 \\ 0 \\ 10 \\ 100 \\ 000 \\ 001 \\$$

- **Hamming cube** of dimension *n* is the set of all bit strings *x* of length *n*
 - *x* and *y* are neighbors if they differ on exactly one bit

N=2 (N=2 (

Definition. Given two texts $x, y \in \{0, 1\}^n$, the **Hamming distance** $d_H(x, y)$ between *x* and *y* is the number of indices at which *x* and *y* differ.

Geometric View. Hamming distance allows us to think about binary strings geometrically.

- **Hamming cube** of dimension *n* is the set of all bit strings *x* of length *n*
 - *x* and *y* are neighbors if they differ on exactly one bit

2- ball C 111

Hamming ball of radius *d* centered at *x* contains all bitstrings *y* whose Hamming distance from *x* is at most *d*.

 *b*all *Q I*[]

Block Codes, Geometrically. Recall a block code is a function from *k*-bit messages to *n*-bit encoded messages: $C: \{0, 1\}^k \rightarrow \{0, 1\}^n$

• *C* must be *injective*

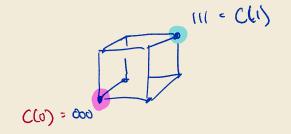
Define $\mathcal{C} = C(\{0, 1\}^k)$ to be the set of all codewords.

Block Codes, Geometrically. Recall a block code is a function from *k*-bit messages to *n*-bit encoded messages: $C: \{0, 1\}^k \rightarrow \{0, 1\}^n$

• C must be *injective*

Define $\mathcal{C} = C(\{0, 1\}^k)$ to be the set of all codewords.

Example. k = 1, n = 3. Define C(b) = (b, b, b).



Block Codes, Geometrically. Recall a block code is a function from *k*-bit messages to *n*-bit encoded messages: $C: \{0, 1\}^k \rightarrow \{0, 1\}^n$

• *C* must be *injective*

Define $\mathcal{C} = C(\{0, 1\}^k)$ to be the set of all codewords.

Example. k = 1, n = 3. Define C(b) = (b, b, b).

Decoding. To decode C(M), find the closest valid codeword x and take $S = C^{-1}(x)$. (10) (11) C(x))

Block Codes, Geometrically. Recall a block code is a function from *k*-bit messages to *n*-bit encoded messages: $C: \{0,1\}^k \rightarrow \{0,1\}^n$

• C must be *injective*

Define $\mathscr{C} = C(\{0, 1\}^k)$ to be the set of all codewords.

Example. k = 1, n = 3. Define C(b) = (b, b, b).

Decoding. To decode C(M), find the closest valid codeword *x* and take $S = C^{-1}(x)$.

Definition. The **code distance** of *C* is the minimum (Hamming) distance between any two valid codewords:

•
$$d = \min_{x,y \in \mathscr{C}} d_H(x,y)$$

Block Codes, Geometrically. Recall a block code is a function from *k*-bit messages to *n*-bit encoded messages: $C: \{0, 1\}^k \rightarrow \{0, 1\}^n$

• *C* must be *injective*

Define $\mathscr{C} = C(\{0, 1\}^k)$ to be the set of all codewords.

Example. k = 1, n = 3. Define C(b) = (b, b, b).

Decoding. To decode C(M), find the closest valid codeword *x* and take $S = C^{-1}(x)$.

Definition. The **code distance** of *C* is the minimum (Hamming) distance between any two valid codewords:

• $d = \min_{x,y \in \mathscr{C}} d_H(x,y)$

Intuition. Larger code distances should be able to detect/correct more errors.

Lower Bounds

Requirements for Detecting and Correcting

Detecting Requirement. Suppose C can detect errors of flipping up to *b* bits. Then *C* has distance $d \ge b + 1$. > Can detected error 6 6i6 compled v b y Proof by contraposition. Suppose d 56 Consider (1) A sends Y, Breceives y (No errors) (2) A sends X, B receives y (L b ervors) Bob connot distinguish cases error detedut (2)20/26

Requirements for Detecting and Correcting

Detecting Requirement. Suppose *C* can detect errors of flipping up to *b* bits. Then *C* has distance $d \ge b+1$.

Correcting Requirement. Suppose *C* can correct errors of flipping up to *b* bits. Then *C* has distance $d \ge 2b + 1$

Do for Thursday.

Question. For what values of *n*, *k*, *d* is it possible to have a block code of distance *d*?

Question. For what values of *n*, *k*, *d* is it possible to have a block code of distance *d*?

Singleton Bound. $2^k \le 2^{n-(d-1)}$, hence $n \ge k+d-1$

Question. For what values of *n*, *k*, *d* is it possible to have a block code of distance *d*?

Singleton Bound. $2^k \le 2^{n-(d-1)}$, hence $n \ge k+d-1$ **Proof sketch.**

- Consider the deleting the first d-1 bits of each codeword.
- Remaining codewords are still pair-wise distinct
- There are only $2^{n-(d-1)}$ possible shorter bitstrings

Question. For what values of *n*, *k*, *d* is it possible to have a block code of distance *d*?

Singleton Bound. $2^k \le 2^{n-(d-1)}$, hence $n \ge k+d-1$

Hamming bound. $2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}$.

Question. For what values of *n*, *k*, *d* is it possible to have a block code of distance *d*?

Singleton Bound. $2^k \le 2^{n-(d-1)}$, hence $n \ge k+d-1$

Hamming bound. $2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}$.

Proof sketch.

- Codewords must be at distance d away
- Thus balls centered at codewords of radius $\lfloor (d-1)/2 \rfloor$ must be disjoint
- Number of balls \times *volume* of each ball must be at most 2^n

Question. For what values of *n*, *k*, *d* is it possible to have a block code of distance *d*?

Singleton Bound. $2^k \le 2^{n-(d-1)}$, hence $n \ge k+d-1$

Hamming bound. $2^k \le 2^n / \sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}$.

Question. These are impossibility results. What is possible?

Question. How can we detect a single error?

Question. How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

Question. How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

Idea. Form *C* by adding an extra bit to message *m* that encodes the parity of *m*

- the extra bit is called a **parity bit**
- which strings are valid codewords?

Question. How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

Idea. Form *C* by adding an extra bit to message *m* that encodes the parity of *m*

- the extra bit is called a parity bit
- which strings are valid codewords?
 - the parity of valid codewords is always 1!

Question. How can we **detect** a single error? **Obsevation.** If a single bit gets flipped, the number of 1s increases or decreases by exactly 1

• the *parity* of the string changes

Idea. Form *C* by adding an extra bit to message *m* that encodes the parity of *m*

- the extra bit is called a parity bit
- which strings are valid codewords?
 - the parity of valid codewords is always 1!

Example. k = 2, n = 3. What is *d*? How do we detect errors?

Small Example. Consider k = 2, so that n = 3 with parity bits.

• Messages {00,01,10,11}

Small Example. Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$

Small Example. Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$

PollEverywhere Question

Consider the code *C* with k = 2 bit messages and one parity bit. What is the distance *d* of *C*?

pollev.com/comp526

Small Example. Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$
- What is the distance of *C*?

Small Example. Consider k = 2, so that n = 3 with parity bits.

- Messages {00,01,10,11}
- $\mathscr{C} = \{000, 011, 101, 110\}$
- What is the distance of *C*?
- How do we detect errors?

Suppose we want to correct a single error. How is this even possible?

Suppose we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?

Suppose we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?
- View on Hamming cube!

Suppose we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?

Inefficiency. To correct a single error, we must **triple** the length of the message?!

Suppose we want to **correct** a single error. How is this even possible? **Simple Solution.** Duplicate each bit 3 times and send the duplicates!

- k = 1, n = 3
- C(b) = bbb
- How do we decode a message?

Inefficiency. To correct a single error, we must **triple** the length of the message?!

A Puzzle. How can we correct a single error more efficiently?

- Don't need to duplicate every bit!
- Idea: use parity checks on *parts* of the string to identify the index where error occurred!

Next Time

- Finish error correcting codes!
- Start parallel algorithms!

Scratch Notes