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Announcements
1. Programming Assignment 2 posted

• Due 29 November

2. Quiz 6 due Friday
• Covers Lecture 13 material
• 1 Question, Short Answer
• Usual rules apply

3. Attendance Code:
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Meeting Goals

1. Introduce Programming Assignment 2

2. Discuss limitations of general compression
3. Introduce compression techniques that exploit

redundancy in texts
3.1 Run length encoding
3.2 Elias codes
3.3 Lempel-Ziv-Welch (LZW) encoding
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Programming
Assignment 2



The Setup
So. You’ve decided to cheat on the final exam for COMP666.

• Final exam consists of 20 true/false questions
• Your hacker friend:

• learns correct answers immediately before exam
• can relay some information to you
• limited to a single 10 bit message

• Before the exam:
• figure out how to get the most out of a 10 bit message

Goal: figure out a scheme to get the highest possible guaranteed score
(without knowing how to answer any questions correctly yourself)

• For all possible (correct) exam solutions, maximize the worst
score you receive
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The Problem, Formalized
Three Pieces:

• B = B[0..20) the correct solutions to the exam
• expressed in binary 1 for true, 0 for false
• known only to your hacker friend

• M = M[0..10) the message your friend sends you
• also expressed in binary

• A = A[0..20) the answers your record for the exam, in binary

Two Procedures:
• Encode the correct exam solutions B to a message M

• preformed by your hacker friend
• Decode the message M to exam solutions A

• performed by you during the exam

One Goal: Achieve the maximum guaranteed score.
• 20−max

{
dH (A,B)

∣∣B ∈ {0,1}20
}

• dH (A,B) is Hamming distance = number of indices where
solutions differ
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Your Task
Main Task. Implement functions to compute & decode the message M

• complete exam_cheat_code.py
• encode(solutions: list[int]) -> list[int]

• input: list of binary values, B, length 20
• output: list of binary values, M , length 10

• decode(message: list[int]) -> list[int]
• input: list of binary values, M , length 10
• output: list of binary values, A, length 20

Given. Testing program exam_tester.py
• computes the the worst guaranteed score from your scheme

Secondary Task. Explain how your scheme works!

• complete a single page PDF (typed) explaining your approach

Optional Task. Prove an upper bound on the best achievable score for
any cheating scheme.
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Evaluation
Total marks: 100

• Main Task (code): 70 marks
• higher guaranteed test score = more marks!
• > 70 marks possible if guaranteed score is > 16
• more marks for simpler solutions (tie breaking)

• Secondary Task (explanation): 30 marks
• Concise and clear explanation of approach
• Sensible/systematic approach

• Optional Task (upper bound proof): up to 20 marks extra credit

Admininstration

• Full instructions on course website:
https://willrosenbaum.com/teaching/2024f-comp-526/

• Submission through Canvas

• Due 29 November (next Friday)
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Limits of
Compression



From Last Time
Introduced lossless compression task
• Compression ratio

• |C|·log |ΣC |
|S·log|ΣS||

ΣC={0,1}= |C|
|S|·log|ΣS|

• Character encoding
• encode characters in binary

• Prefix coding
• ensures unambiguous decoding

• Huffman codes
• most efficient possible prefix code
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From Last Time
Introduced lossless compression task
• Compression ratio

• |C|·log |ΣC |
|S·log|ΣS||

ΣC={0,1}= |C|
|S|·log|ΣS|

• Character encoding
• encode characters in binary

• Prefix coding
• ensures unambiguous decoding

• Huffman codes
• most efficient possible prefix code

PollEverywhere Question

Suppose S is a text of length
n over an alphabet ΣS of
size 8. What is the smallest
possible compression ratio
of any character encoding
of S?

pollev.com/comp526
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Character Encoding Limitations
An Issue with character encodings:

• Only single characters are encoded in isolation

• Cannot exploit larger patterns in text

Example. Huffman encoding doesn’t distinguish between the
following texts:

• S =AAAAAAAAAAAAAAAAAAAABBBBBBBBBBCCCCCCCCCC
• T =ACBBAAACAABAABABCAACCAABBACCAAAACBBAABCC

But evidently, strings like S are admit simpler descriptions than T :

• Print 20 As followed by 10 B’s followed by 10 Cs.

Question. How can we generalize our notation of encoding to
compress texts further?

• One idea: use a larger source alphabet—e.g., use pairs of
characters
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General Compression
High Level View. A compressed representation of S is a program
whose output is S.

• Huffman codes are very restricted programs represented by the
Huffman tree

• Why restrict ourselves?

• Fix syntax and semantics for general decoding

• Any valid program that outputs S is an encoding of S

Example.

s = ‘’
for i in range(1000000):

s = s + ‘A’
print(s)
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Quantifying General Compression
Definition. Suppose we fix a (programming) language L (e.g., Python).
Given a source text S, the Kolmogorov complexity of S (relative to L),
denoted K (S) is the length of the shortest program whose output is S.

• This is a very general notion of encoding of S
• S may admit a huge amount of compression

• S = AAA . . .A︸ ︷︷ ︸
n times

BBB . . .B︸ ︷︷ ︸
2n times

• S = 31415926535. . .
• S = 12345678910111213141516. . .
• S = 011010011001011010010110011010010110. . .

. . . though it may not be obvious how.

Question. How much compression can we achieve in this way?

• How close to K (S) can we get?
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Limits of General Compression
Fact 1. Suppose Σ= {0,1} and fix any language L. Then for every
positive integer n, there exists a source text S ∈Σn for which K (S) ≥ n.

• Interpretation: some input text is not compressible at all

• Reason is pretty simple: there are more possible texts of length n
than all possible texts of length up to n

• “No free lunch” theorem for compression

• Explore in tutorials this week

Well we can’t compress everything, but how well can we do?

• Can we generally find an optimal compression of a string in a
given language?

• We did manage this for prefix codes! (Huffman codes)

14 / 29
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Impossibility and Compression

Theorem
Suppose L is a “sufficiently rich” programming language (e.g. Python).
Then there is no algorithm/program that for any string S:

• computes K (S)

• distinguishes K (S) = |S| from K (S) < |S|.
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Proof (sketch). Argue by contradiction

• Suppose P is a program that computes K (S).

• By Fact 1, for every n, there is some Sn with K (Sn) ≥ n.

• Consider the following program, P′:

• On input n, iterate over all source texts S of length n
• Apply P, and return the first Sn with P(Sn) ≥ n.

• Claim. K (Sn) = O(logn).

• This contradicts the assumption that P computed K (S). □
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Impossibility and Compression

Theorem
Suppose L is a “sufficiently rich” programming language (e.g. Python).
Then there is no algorithm/program that for any string S:

• computes K (S)

• distinguishes K (S) = |S| from K (S) < |S|.
Moral. There is no general method for determining how compressible
a source text might be.

• Most texts are not very compressible.
• Generalization of Fact 1.

• But many “interesting” source texts are compressible.
• Can still exploit features of common texts

• most “interesting” source texts obey some patterns
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Run Length
Encoding



A Simple Idea
Example. How could we compress
the following source text?
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000101100100000111111000000000011111000
001111111110001111111110000001111111000
001111011010001110001111000011100000000
001100000000000000000111000111000000000
001100000000000000000011001110000000000
001100000000000000000011001110000000000
001101100000000000000111001100111110000
001111111100000000000111001111111111000
001110111110000000001110001111100111100
000000000111000000011100001110000001110
000000000111000000011000001110000001100
000000000011000000110000000110000001110
000000000011000001110000001110000001100
000000000111000111000000000110000001110
000000000110000111000000000111000011100
001101111110001111011101000011111111000
011111111100011111111111100001111110000
000101100000001010011001000000100100000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

Simple Setting. ΣS = {0,1}.
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Run Length Encoding. For binary alphabet, store

• the first bit (0 or 1)

• the lengths of the runs

Example. 11111100001111000000000 becomes 1,6,4,4,9
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A Simple Idea
Run Length Encoding. For binary alphabet, store

• the first bit (0 or 1)

• the lengths of the runs

Example. 11111100001111000000000 becomes 1,6,4,4,9
Question. What is wrong with this encoding?
Issues:

• The alphabet is no longer binary!

• Even if we express run lengths in binary, we still need an extra
symbol for the comma!

17 / 29



Representing Lists
Generic Problem. Given only a binary alphabet, how can we express a
list of numbers efficiently?

• A single m can be represented with logm bits.

• Can we represent k such numbers with ≈ k logm bits?

Two approaches.

• Represent list lengths in unary:

m = 000 · · ·0︸ ︷︷ ︸
m times

1

Sentinel 1 denotes the end of a number

• Represent values in binary, and concatenate encoded values

5,2,3 7−→ 1011011
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Representing Lists
Generic Problem. Given only a binary alphabet, how can we express a
list of numbers efficiently?

• A single m can be represented with logm bits.
• Can we represent k such numbers with ≈ k logm bits?

Two approaches.
• Represent list lengths in unary:

m = 000 · · ·0︸ ︷︷ ︸
m times

1

Sentinel 1 denotes the end of a number
• Represent values in binary, and concatenate encoded values

5,2,3 7−→ 1011011

Question. How to address these shortcomings?
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Elias Encoding
Goal. A prefix code for long runs (of 0s or 1s)

• Represent lengths in unary
• too long!

• Represent values in binary
• not prefix code!

• Binary representations start with 1

• ℓ 0’s followed by ℓ+1 bits starting
with a 1.
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Elias Encoding
Goal. A prefix code for long runs (of 0s or 1s)
Two approaches.

• Represent lengths in unary
• too long!

• Represent values in binary
• not prefix code!

Idea. Combine the two
approaches:

• Express m in binary (using logm bits)

• Write the length of m’s binary
representation (less 1) in unary

• Concatenate unary then binary parts

Example. m = 21

• 21 = 101012 (binary)

• length ℓ= 4 = 00001

• encoding 21 7→ 00010101

Question. Why is this a prefix
code?

• Binary representations start with 1

• ℓ 0’s followed by ℓ+1 bits starting
with a 1.

This encoding of positive integers is called the Elias gamma code.
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Unique Decodability
Observation. If the Elias gamma
code is a prefix code, then we
should be able to unambiguously
decode a sequence of
concatenated encoded strings.

PollEverywhere Question

What is the first value stored in the
following encoded text:

00001101000010111001111

pollev.com/comp526
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Run Length Encoding (RLE)
Encoding procedure. To compute the RLE of a binary source text S:

• Write the first bit of S.

• For each run, write the length of the run using the Elias gamma
code

Example. Encode 11111100001111000000000
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Run Length Encoding (RLE)
Encoding procedure. To compute the RLE of a binary source text S:

• Write the first bit of S.

• For each run, write the length of the run using the Elias gamma
code

Example. Encode 11111100001111000000000
=⇒ 1 00110 010 010 0001001
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Run Length Encoding (RLE)
Encoding procedure. To compute the RLE of a binary source text S:

• Write the first bit of S.

• For each run, write the length of the run using the Elias gamma
code

Decoding procedure. To decode an RLE encoded text C:

• Write the first bit b0 of C

• Parse code word starting at index 1 of C and repeat b0 that many
times

• Parse next coded value of C and write 1−b0 that many times

• Repeat until done
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Run Length Encoding (RLE)
Encoding procedure. To compute the RLE of a binary source text S:

• Write the first bit of S.

• For each run, write the length of the run using the Elias gamma
code

Decoding procedure. To decode an RLE encoded text C:

• Write the first bit b0 of C

• Parse code word starting at index 1 of C and repeat b0 that many
times

• Parse next coded value of C and write 1−b0 that many times

• Repeat until done

Example. Decode 1001100100100001001.
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RLE Discussion
Generalizations and Applications.

• Can be extended to larger alphabets
• write next character before run length

• Useful for some image formats (TIFF)

Evaluation.

• Fairly simple and fast!

• Can compress n bits to Θ(logn) bits (extreme best case!)
• Not good compression for many common datatypes

• No compression for run lengths ≤ 6
• Expansion for run lengths k = 2,6.
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Lempel-Ziv-
Welch Encoding



Lempel-Ziv Compression
Compression so far: Exploit frequently repeated single characters

• Huffman: globally frequent characters (large alphabet)

• RLE: repeated characters (binary alphabet)

Observation. In many contexts, some substrings are much more
frequent than others

• short words in English text (the, be, to, of, and, a, in, that)

• tags in HTML (<div>, <a href, . . . )

Lempel-Ziv covers a family of adaptive compression algorithms
• encode (frequently repeated) substrings of text with codewords

• not just individual characters!

• Several variations of this idea

• Lempel-Ziv-Welch is a clean one (that is used in practice!)
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LZW Idea
Codewords for different strings of text

• Variable-to-fixed encoding
• all codewords have k bits (typical k ≈ 12)
• size of substring represented by each codeword varies

• Maintain a dictionary D (map) with 2k entries
• codewords are values in the dictionary
• text strings are keys in the dictionary

Encoding Idea.

• Initialize D with single characters Σ

• Start reading characters from S building up “words” (substrings) x

• If D contains x and next character is c, check if D contains xc

• If D does not contain xc, write D(x) to C, add xc to D, and start
building next word from c
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Example
Consider S = N A N A S B A N A N A S

C =

code string

0000 A
0001 B
0010 N
0011 S
0100
0101
0110
0111
1000
1001
1010
1011
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LZW in Pseudocode
1: procedure LZWENCODE(S[0..n))
2: x ← ε ▷ previous word, initially empty
3: C ← ε ▷ output, initially empty
4: D ← all c ∈ΣS ▷ dictionary of codewords
5: k ← ∣∣ΣS

∣∣ ▷ next free codeword
6: for i = 0,1, . . . ,n−1 do
7: c ← S[i]
8: if D.CONTAINSKEY(xc) then
9: x ← xc

10: else
11: C ← C D.GET(x) ▷ append codeword for x
12: D.PUT(xc,k)
13: k ← k+1, x ← c
14: end if
15: end for
16: C ← C D.GET(x)
17: end procedure

For next time. Given C and D, how to decompress?
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Next Time
Decompression

• Decoding LZW Encoding

• Making Texts Compressible
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Scratch Notes
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