
Lecture 13: Data Compression I
COMP526: Efficient Algorithms

Updated: November 14, 2024
Will Rosenbaum
University of Liverpool

1 / 30

Announcements
1. Programming Assignment 2 posted soon

2. Quiz 5 due Friday
• Covers string matching
• 2 questions (multiple choice)
• Usual rules apply

3. Attendance Code:

2 / 30

Meeting Goals
Discuss data compression!

• Introduce the data compression task

• Define character encoding and related terminology

• Define prefix codes

• Construct Huffman codes

• Prove optimality of Huffmann codes

3 / 30

Data
Compression

The Story So Far
Emphasis. How do we process data?

• Data structures
• How can we organize data perform primitive operations

efficiently?

• Fundamental operations on arbitrary data:
• sorting
• string matching

A New Question. How do we store and transmit data efficiently?
New Topics. Fundamental problems

1. Data Compression (starting today)
• how to store data using as little space as possible

2. Error Correction (following topic)
• how to

5 / 30

The Story So Far
Emphasis. How do we process data?

• Data structures
• How can we organize data perform primitive operations

efficiently?

• Fundamental operations on arbitrary data:
• sorting
• string matching

A New Question. How do we store and transmit data efficiently?
New Topics. Fundamental problems

1. Data Compression (starting today)
• how to store data using as little space as possible

2. Error Correction (following topic)
• how to

5 / 30

The Data Compression Task
Terminology.

• source text: string S ∈Σ∗S to be stored/transmitted

• ΣS is some alphabet, e.g., Roman alphabet

• coded text: encoded data C ∈Σ∗C that is actually stored/transmitted

• typically have ΣC = {0,1}

• encoding: An algorithm E that maps source texts to coded texts

• E :Σ∗
S →Σ∗

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :Σ∗
C →Σ∗

S

• decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)

• Lossy Compression. decoding approximates original text: D(E(S)) ≈ S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

The Data Compression Task
Terminology.

• source text: string S ∈Σ∗S to be stored/transmitted

• ΣS is some alphabet, e.g., Roman alphabet

• coded text: encoded data C ∈Σ∗C that is actually stored/transmitted

• typically have ΣC = {0,1}

• encoding: An algorithm E that maps source texts to coded texts

• E :Σ∗
S →Σ∗

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :Σ∗
C →Σ∗

S

• decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)

• Lossy Compression. decoding approximates original text: D(E(S)) ≈ S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

The Data Compression Task
Terminology.

• source text: string S ∈Σ∗S to be stored/transmitted

• ΣS is some alphabet, e.g., Roman alphabet

• coded text: encoded data C ∈Σ∗C that is actually stored/transmitted

• typically have ΣC = {0,1}

• encoding: An algorithm E that maps source texts to coded texts

• E :Σ∗
S →Σ∗

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :Σ∗
C →Σ∗

S

Goal. Represent S using as little space as possible.

• decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)

• Lossy Compression. decoding approximates original text: D(E(S)) ≈ S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

The Data Compression Task
Terminology.

• source text: string S ∈Σ∗S to be stored/transmitted

• ΣS is some alphabet, e.g., Roman alphabet

• coded text: encoded data C ∈Σ∗C that is actually stored/transmitted

• typically have ΣC = {0,1}

• encoding: An algorithm E that maps source texts to coded texts

• E :Σ∗
S →Σ∗

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :Σ∗
C →Σ∗

S

Lossy vs. Lossless Compression.
• Lossless Compression. decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)

• Lossy Compression. decoding approximates original text: D(E(S)) ≈ S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

The Data Compression Task
Terminology.

• source text: string S ∈Σ∗S to be stored/transmitted

• ΣS is some alphabet, e.g., Roman alphabet

• coded text: encoded data C ∈Σ∗C that is actually stored/transmitted

• typically have ΣC = {0,1}

• encoding: An algorithm E that maps source texts to coded texts

• E :Σ∗
S →Σ∗

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :Σ∗
C →Σ∗

S

Lossy vs. Lossless Compression.
• Lossless Compression. decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)

• Lossy Compression. decoding approximates original text: D(E(S)) ≈ S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

The Data Compression Task
Terminology.

• source text: string S ∈Σ∗S to be stored/transmitted

• ΣS is some alphabet, e.g., Roman alphabet

• coded text: encoded data C ∈Σ∗C that is actually stored/transmitted

• typically have ΣC = {0,1}
• encoding: An algorithm E that maps source texts to coded texts

• E :Σ∗
S →Σ∗

C
• decoding: An algorithm D that maps encoded texts to decoded texts

• D :Σ∗
C →Σ∗

S

Lossy vs. Lossless Compression.
• Lossless Compression. decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)

• Lossy Compression. decoding approximates original text: D(E(S)) ≈ S

• Examples: mp3 (audio), jpg (image), mpg (video)

Our Focus: lossless compression!
6 / 30

The Quality of an Encoding Scheme
Goals of Encoding

• Efficiency of encoding/decoding

• resilience to errors/noise in transmission

• security (encryption)

• integrity (detect modifications)

• size

7 / 30

The Quality of an Encoding Scheme
Goals of Encoding

• Efficiency of encoding/decoding

• resilience to errors/noise in transmission

• security (encryption)

• integrity (detect modifications)

• size

Our focus. Minimize the size of the encoded text.

• data compression

7 / 30

The Quality of an Encoding Scheme
Our focus. Minimize the size of the encoded text.

• data compression

Measure of quality. The compression ratio:

|C| · log |ΣC |∣∣S · log |ΣS|
∣∣ ΣC={0,1}= |C|

|S| · log |ΣS|

7 / 30

The Quality of an Encoding Scheme
Our focus. Minimize the size of the encoded text.

• data compression

Measure of quality. The compression ratio:

|C| · log |ΣC |∣∣S · log |ΣS|
∣∣ ΣC={0,1}= |C|

|S| · log |ΣS|

Question. Why all of the log |Σ|s?

7 / 30

The Quality of an Encoding Scheme
Our focus. Minimize the size of the encoded text.

• data compression

Measure of quality. The compression ratio:

|C| · log |ΣC |∣∣S · log |ΣS|
∣∣ ΣC={0,1}= |C|

|S| · log |ΣS|

Question. Why all of the log |Σ|s?

• ⌈
logσ

⌉
is the minimum number of bits needed to represent σ

distinct values (in binary)

• there are 2b distinct binary strings of length b

7 / 30

The Quality of an Encoding Scheme
Our focus. Minimize the size of the encoded text.

• data compression

Measure of quality. The compression ratio:

|C| · log |ΣC |∣∣S · log |ΣS|
∣∣ ΣC={0,1}= |C|

|S| · log |ΣS|

Interpretation. Compression ratios:

< 1 =⇒ compression
• smaller values are better

= 1 =⇒ no compression

> 1 =⇒ encoded text is larger(?!)
• this is sometimes unavoidable . . . foreshadowing to next week

7 / 30

Data Compression Roadmap
Questions. When, how, and how much can we compress?

• Part I: Exploiting non-uniform character frequencies
• Huffman Codes

• Interlude: Limits of data compression

• Part II: Exploiting repetition in texts
• Run-length encoding
• Lempel-Ziv-Welch (LZW) encoding

• Part III: Creating repetition in texts
• Move-to-front transform
• Burrows-Wheeler transform

8 / 30

Character
Encoding

Question. How do computers encoded English language text?

10 / 30

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

• all characters treated equally

• 27 = 128 possible characters

10 / 30

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

• all characters treated equally

• 27 = 128 possible characters

Modern answer. Unicode
• ∼ 150,000 representable characters (different scripts, emoji, etc.)

• several encoding schemes character → bits

• different characters’ representations can have different lengths

• e.g., ASCII characters represented by 8 bits

10 / 30

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

• all characters treated equally

• 27 = 128 possible characters

Modern answer. Unicode
• ∼ 150,000 representable characters (different scripts, emoji, etc.)

• several encoding schemes character → bits

• different characters’ representations can have different lengths

• e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E :ΣS →Σ∗
C

• typically, |ΣS|≫ |ΣC | (= 2), so need several bits per character

• for c ∈ΣS, call E(c) the codeword of c

• to encode a text, encode individual characters and concatenate

10 / 30

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

• all characters treated equally
• 27 = 128 possible characters

Modern answer. Unicode
• ∼ 150,000 representable characters (different scripts, emoji, etc.)
• several encoding schemes character → bits

• different characters’ representations can have different lengths
• e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E :ΣS →Σ∗
C

• typically, |ΣS|≫ |ΣC | (= 2), so need several bits per character
• for c ∈ΣS, call E(c) the codeword of c
• to encode a text, encode individual characters and concatenate

Fixed vs. Variable Length Encoding
• fixed length encoding =⇒ all codewords have the same length

(e.g. ASCII)
• variable length encoding =⇒ different lengths for different

codewords (e.g. Unicode)
10 / 30

Fixed Length Codes
Advantages of fixed length codes

• fast decoding
• use a lookup-table
• can be as fast as a single array access

• local encoding
• if character length is B, ith character starts at index i ·B

Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
• Inflexible (non-extensible)

• how can we represent this awesome new emoji???
• Space inefficient

• infrequently used characters require as much space as common
characters

• common characters are longer than they need to be

11 / 30

Fixed Length Codes
Advantages of fixed length codes

• fast decoding
• use a lookup-table
• can be as fast as a single array access

• local encoding
• if character length is B, ith character starts at index i ·B

Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
• Inflexible (non-extensible)

• how can we represent this awesome new emoji???
• Space inefficient

• infrequently used characters require as much space as common
characters

• common characters are longer than they need to be

11 / 30

Fixed Length Codes
Advantages of fixed length codes

• fast decoding
• use a lookup-table
• can be as fast as a single array access

• local encoding
• if character length is B, ith character starts at index i ·B

Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
• Inflexible (non-extensible)

• how can we represent this awesome new emoji???
• Space inefficient

• infrequently used characters require as much space as common
characters

• common characters are longer than they need to be
11 / 30

Variable Length Codes
Variable Length
Advantages:

• more flexibility

• compressibility?

12 / 30

Variable Length Codes
Variable Length
Advantages:

• more flexibility

• compressibility?

An old idea. Morse Code

• encode characters as
“dots” and “dashes”

• more common
characters are shorter

12 / 30

Variable Length Codes
Variable Length
Advantages:

• more flexibility

• compressibility?

An old idea. Morse Code

• encode characters as
“dots” and “dashes”

• more common
characters are shorter

Question. How many
characters in the Morse
code encoding?

12 / 30

Codes Misbehaving

PollEverywhere

Consider the following code

c a n b s
E(c) 0 10 110 100

What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13 / 30

https://pollev.com/comp526

Codes Misbehaving

Question. What was the issue with this
code?

PollEverywhere

Consider the following code

c a n b s
E(c) 0 10 110 100

What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13 / 30

https://pollev.com/comp526

Codes Misbehaving

Question. What was the issue with this
code?

• The relationship between
E(n) = 10 and E(s) = 100

• If we read 10 in the encoded
text, are we done reading a
character?

• “Reasonable” codes should avoid
this ambiguity!

• We should always know when
we’re done reading a character.

PollEverywhere

Consider the following code

c a n b s
E(c) 0 10 110 100

What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13 / 30

https://pollev.com/comp526

Codes Misbehaving

Question. What was the issue with this
code?

• The relationship between
E(n) = 10 and E(s) = 100

• If we read 10 in the encoded
text, are we done reading a
character?

• “Reasonable” codes should avoid
this ambiguity!

• We should always know when
we’re done reading a character.

PollEverywhere

Consider the following code

c a n b s
E(c) 0 10 110 100

What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13 / 30

https://pollev.com/comp526

Prefix Codes and Tries
Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code

Example.
c A E N O T ␣

E(c) 01 101 001 100 11 000

14 / 30

Prefix Codes and Tries
Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code

Example.
c A E N O T ␣

E(c) 01 101 001 100 11 000

Representation of prefix codes: the trie data structure!

• binary tree

• one leaf for each character

• edges labeled 0 or 1

• codewords = paths to leaves
0

N
1

0
A

1

0

O
0

E
1

0
T

1

1

14 / 30

Prefix Codes and Tries
Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code

Example.
c A E N O T ␣

E(c) 01 101 001 100 11 000

Representation of prefix codes: the trie data structure!

• binary tree

• one leaf for each character

• edges labeled 0 or 1

• codewords = paths to leaves
0

N
1

0
A

1

0

O
0

E
1

0
T

1

1

Encoding. Use the table: AN␣ANT

Decoding. Use the trie: 111000001010111

14 / 30

Trie it Yourself

PollEverywhere Question

What is the result of using the trie
on the right to decode the message:
1100100100111

pollev.com/comp526

A

0

N

0

B

0

S

1

1

1

15 / 30

https://pollev.com/comp526

Fixed, Static, Adaptive
Note. In order to use a prefix code, we must also store the codewords!

• fixed coding uses the same code for all strings
• e.g. ASCII, Unicode encodings (UTF-8)

• static coding uses the same codeword for each instance of a
character in a text

• codewords may different for different texts
• must store/transmit the codewords as well as the encoded text!

• adaptive coding may change the codewords as the text is
processed

• codewords are stored implicitly within the coded message

16 / 30

Huffman Codes

Variable Length and Compression
Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
• Σ= {A,G,H,!}

• Fixed length encoding:

c A G H !
E(c) 00 01 10 11

=⇒ Total encoded length = 30 (15 chars at 2 bits per char)

• Exploiting frequency of A and G
c A G H !

E(c) 0 10 110 111
=⇒ Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18 / 30

Variable Length and Compression
Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
• Σ= {A,G,H,!}

• Fixed length encoding:

c A G H !
E(c) 00 01 10 11

=⇒ Total encoded length = 30 (15 chars at 2 bits per char)

• Exploiting frequency of A and G
c A G H !

E(c) 0 10 110 111
=⇒ Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18 / 30

Variable Length and Compression
Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
• Σ= {A,G,H,!}

• Fixed length encoding:

c A G H !
E(c) 00 01 10 11

=⇒ Total encoded length = 30 (15 chars at 2 bits per char)

• Exploiting frequency of A and G
c A G H !

E(c) 0 10 110 111
=⇒ Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18 / 30

Variable Length and Compression
Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
• Σ= {A,G,H,!}

• Fixed length encoding:

c A G H !
E(c) 00 01 10 11

=⇒ Total encoded length = 30 (15 chars at 2 bits per char)

• Exploiting frequency of A and G
c A G H !

E(c) 0 10 110 111
=⇒ Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18 / 30

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet Σ;

• weights w(c) ≥ 0 for each c ∈Σ.

Find the prefix code E for Σ that minimizes
∑

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
∑

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?

• I suppose we can with brute force: check all prefix codes
• runs in exponential time in |Σ|

• Can we solve it efficiently?

19 / 30

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet Σ;

• weights w(c) ≥ 0 for each c ∈Σ.

Find the prefix code E for Σ that minimizes
∑

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
∑

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?

• I suppose we can with brute force: check all prefix codes
• runs in exponential time in |Σ|

• Can we solve it efficiently?

19 / 30

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet Σ;

• weights w(c) ≥ 0 for each c ∈Σ.

Find the prefix code E for Σ that minimizes
∑

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
∑

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?

• I suppose we can with brute force: check all prefix codes
• runs in exponential time in |Σ|

• Can we solve it efficiently?

19 / 30

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet Σ;

• weights w(c) ≥ 0 for each c ∈Σ.

Find the prefix code E for Σ that minimizes
∑

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
∑

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?
• I suppose we can with brute force: check all prefix codes

• runs in exponential time in |Σ|

• Can we solve it efficiently?

19 / 30

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet Σ;

• weights w(c) ≥ 0 for each c ∈Σ.

Find the prefix code E for Σ that minimizes
∑

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
∑

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?
• I suppose we can with brute force: check all prefix codes

• runs in exponential time in |Σ|
• Can we solve it efficiently?

19 / 30

Huffman Coding: Greed is Good
Idea. Build the character trie greedily from the leaves up.

• Prefix codes are binary trees with leaves labeled by Σ

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c ∈Σ
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v
3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

20 / 30

Huffman Coding: Greed is Good
Idea. Build the character trie greedily from the leaves up.

• Prefix codes are binary trees with leaves labeled by Σ

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c ∈Σ
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v
3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

20 / 30

Huffman Coding: Greed is Good
Idea. Build the character trie greedily from the leaves up.

• Prefix codes are binary trees with leaves labeled by Σ

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c ∈Σ
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v
3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

20 / 30

Huffman Coding: Greed is Good
Idea. Build the character trie greedily from the leaves up.

• Prefix codes are binary trees with leaves labeled by Σ

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c ∈Σ
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v
3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

Example.

• Σ= {A,B,C,D,E}

• weights = {0.25,0.15,0.1,0.1,0.4}

20 / 30

LOSSLESS Example
Example. Find the Huffman encoding for the text LOSSLESS.

Three Steps:

1. Compute frequency counts w(c)

2. Build Huffman tree

3. Write Huffman code from the tree

21 / 30

LOSSLESS Example
Example. Find the Huffman encoding for the text LOSSLESS.

Three Steps:

1. Compute frequency counts w(c)

2. Build Huffman tree

3. Write Huffman code from the tree

21 / 30

Huffman Analysis: Greed Works

Theorem
Given alphabet Σ and weight function w :Σ→ R≥0, the Huffman coding
schemes gives the minimum weighted codeword length
ℓ(E) =∑

c∈Σw(c) · |E(c)| among all prefix codes.

Proof sketch. Induction on |Σ|
• Let E∗ be an optimal encoding/trie

• Claim: ∃ sibling leaves x,y at max depth

• Swap x and y for two min weight leaves, a,b

• Optimal code for Σ′ =Σ\ {a,b}∪{
ab

}
gives optimal

code for Σ (verify this!)

• By inductive hypothesis, Huffman gives optimal code
for Σ′

• So we get an optimal code for Σ □

22 / 30

Huffman Analysis: Greed Works

Theorem
Given alphabet Σ and weight function w :Σ→ R≥0, the Huffman coding
schemes gives the minimum weighted codeword length
ℓ(E) =∑

c∈Σw(c) · |E(c)| among all prefix codes.

Proof sketch. Induction on |Σ|
• Let E∗ be an optimal encoding/trie

• Claim: ∃ sibling leaves x,y at max depth

• Swap x and y for two min weight leaves, a,b

• Optimal code for Σ′ =Σ\ {a,b}∪{
ab

}
gives optimal

code for Σ (verify this!)

• By inductive hypothesis, Huffman gives optimal code
for Σ′

• So we get an optimal code for Σ □

22 / 30

Huffman Computational Efficiency
Question. For an alphabet of size m = |Σ| and weights w, how
efficiently can we build the Huffman code?

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c ∈Σ
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v
3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

• Construct the codeword table

23 / 30

Tie Breaking Rules
So far we have two ambiguities in our Huffman trie description:

1. Which child is right/left child of the parent?

2. What do we do if weights are tied?

Conventions.

• Smaller weight child is on the left
• All ties broken by earliest character in alphabetical order

• for internal vertices, the one containing the alphabetically first
character as a descendant is on the left

24 / 30

Tie Breaking Rules
So far we have two ambiguities in our Huffman trie description:

1. Which child is right/left child of the parent?

2. What do we do if weights are tied?

Conventions.

• Smaller weight child is on the left
• All ties broken by earliest character in alphabetical order

• for internal vertices, the one containing the alphabetically first
character as a descendant is on the left

24 / 30

Huffman and
Entropy

A Thought Experiment
Suppose I have an alphabet Σ= {c1,c2, . . . ,cn} and I choose a character
ci at random to transmit

• each ci is chosen with probability pi.

Idea. Think of pi as sub-intervals of [0,1].

• Outcome is a random point x in [0,1]

• ci corresponds to the interval containing x

• Use binary search to find the interval!

• If the interval has width pi need log(1/pi) queries to determine
interval

• The expected (average) number of queries is then

H (p1,p2, . . . ,pn) =∑n
i=1 pi log

(
1
pi

)
• H is the entropy of the distribution over Σ

26 / 30

A Thought Experiment
Suppose I have an alphabet Σ= {c1,c2, . . . ,cn} and I choose a character
ci at random to transmit

• each ci is chosen with probability pi.

Idea. Think of pi as sub-intervals of [0,1].

• Outcome is a random point x in [0,1]

• ci corresponds to the interval containing x

• Use binary search to find the interval!

• If the interval has width pi need log(1/pi) queries to determine
interval

• The expected (average) number of queries is then

H (p1,p2, . . . ,pn) =∑n
i=1 pi log

(
1
pi

)
• H is the entropy of the distribution over Σ

26 / 30

A Thought Experiment
Suppose I have an alphabet Σ= {c1,c2, . . . ,cn} and I choose a character
ci at random to transmit

• each ci is chosen with probability pi.

Idea. Think of pi as sub-intervals of [0,1].

• Outcome is a random point x in [0,1]

• ci corresponds to the interval containing x

• Use binary search to find the interval!

• If the interval has width pi need log(1/pi) queries to determine
interval

• The expected (average) number of queries is then

H (p1,p2, . . . ,pn) =∑n
i=1 pi log

(
1
pi

)
• H is the entropy of the distribution over Σ

26 / 30

Properties of Entropy
Setup. We choose elements from Σ= {c1,c2, . . . ,cn} randomly, each ci

chosen with probability pi.

One can show:

• Entropy H is a lower bound on the average number of bits
needed to transmit a random character from Σ

• If we use a Huffman encoding of Σ
• weights w(ci) = pi
• transmit the Huffman codeword E(ci)

Then the average length ℓ(E) of the transmitted word satisfies

H ≤ ℓ(E) ≤H +1

27 / 30

Properties of Entropy
Setup. We choose elements from Σ= {c1,c2, . . . ,cn} randomly, each ci

chosen with probability pi.

One can show:

• Entropy H is a lower bound on the average number of bits
needed to transmit a random character from Σ

• If we use a Huffman encoding of Σ
• weights w(ci) = pi
• transmit the Huffman codeword E(ci)

Then the average length ℓ(E) of the transmitted word satisfies

H ≤ ℓ(E) ≤H +1

27 / 30

Properties of Entropy
Setup. We choose elements from Σ= {c1,c2, . . . ,cn} randomly, each ci

chosen with probability pi.

One can show:

• Entropy H is a lower bound on the average number of bits
needed to transmit a random character from Σ

• If we use a Huffman encoding of Σ
• weights w(ci) = pi
• transmit the Huffman codeword E(ci)

Then the average length ℓ(E) of the transmitted word satisfies

H ≤ ℓ(E) ≤H +1

Conclusion. Huffman coding gives (nearly) the best possible average
compression for randomly generated texts!

27 / 30

Emprical Entropy
Definitions. For a fixed string S over alphabet Σ= {c1,c2, . . . ,cσ}, we
define the relative frequency of character ci in S to be

pi = # occurrances of ci in S

|S|
The empirical entropy of S is then

H0(S) =H (p1,p2, . . . ,pσ).

The length of the Huffman encoded text C = E(S) is

|C| =
σ∑

i=1
|S|ai

|E(ci)| = n
n∑

i=1
pi |E(ci)| = nℓ(E).

Applying the previous slide gives H0(S)n ≤ |C| ≤ (H0(S)+1)n.
• Entropy and Huffman coding length are intimately connected

28 / 30

Emprical Entropy
Definitions. For a fixed string S over alphabet Σ= {c1,c2, . . . ,cσ}, we
define the relative frequency of character ci in S to be

pi = # occurrances of ci in S

|S|
The empirical entropy of S is then

H0(S) =H (p1,p2, . . . ,pσ).

The length of the Huffman encoded text C = E(S) is

|C| =
σ∑

i=1
|S|ai

|E(ci)| = n
n∑

i=1
pi |E(ci)| = nℓ(E).

Applying the previous slide gives H0(S)n ≤ |C| ≤ (H0(S)+1)n.
• Entropy and Huffman coding length are intimately connected

28 / 30

Next Time

More Compression!
• Limits of Compressibility
• Compressing Repetitive Texts

29 / 30

Scratch Notes

30 / 30

	Data Compression
	Character Encoding
	Huffman Codes
	Huffman and Entropy

