
Lecture 13: Data Compression I
COMP526: Efficient Algorithms

Updated: November 14, 2024
Will Rosenbaum
University of Liverpool

1 / 30

508682

Announcements

1. Programming Assignment 2 posted soon
2. Quiz 5 due Friday

• Covers string matching
• 2 questions (multiple choice)
• Usual rules apply

3. Attendance Code:

2 / 30

7

508682

Meeting Goals
Discuss data compression!

• Introduce the data compression task

• Define character encoding and related terminology

• Define prefix codes

• Construct Huffman codes

• Prove optimality of Huffmann codes

3 / 30

Data
Compression

The Story So Far
Emphasis. How do we process data?

• Data structures
• How can we organize data perform primitive operations

efficiently?
• Fundamental operations on arbitrary data:

• sorting
• string matching

A New Question. How do we store and transmit data efficiently?
New Topics. Fundamental problems

1. Data Compression (starting today)
• how to store data using as little space as possible

2. Error Correction (following topic)
• how to

5 / 30

The Story So Far
Emphasis. How do we process data?

• Data structures
• How can we organize data perform primitive operations

efficiently?
• Fundamental operations on arbitrary data:

• sorting
• string matching

A New Question. How do we store and transmit data efficiently?
New Topics. Fundamental problems

1. Data Compression (starting today)
• how to store data using as little space as possible

2. Error Correction (following topic)
• how to

5 / 30

automatically detect and correct errors in our data

The Data Compression Task
Terminology.

• source text: string S 2ß§
S

to be stored/transmitted

• ßS is some alphabet, e.g., Roman alphabet
• coded text: encoded data C 2ß§

C
that is actually stored/transmitted

• typically have ßC = {0,1}

• encoding: An algorithm E that maps source texts to coded texts

• E :ß§
S
!ß§

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :ß§
C
!ß§

S

• decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)
• Lossy Compression. decoding approximates original text: D(E(S)) º S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

Es source

alphabet

En cocked

alphabet
I

computer
alphabet ,

typical
50,

15

The Data Compression Task
Terminology.

• source text: string S 2ß§
S

to be stored/transmitted

• ßS is some alphabet, e.g., Roman alphabet
• coded text: encoded data C 2ß§

C
that is actually stored/transmitted

• typically have ßC = {0,1}
• encoding: An algorithm E that maps source texts to coded texts

• E :ß§
S
!ß§

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :ß§
C
!ß§

S

• decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)
• Lossy Compression. decoding approximates original text: D(E(S)) º S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

Tipthe

The Data Compression Task
Terminology.

• source text: string S 2ß§
S

to be stored/transmitted

• ßS is some alphabet, e.g., Roman alphabet
• coded text: encoded data C 2ß§

C
that is actually stored/transmitted

• typically have ßC = {0,1}
• encoding: An algorithm E that maps source texts to coded texts

• E :ß§
S
!ß§

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :ß§
C
!ß§

S

Goal. Represent S using as little space as possible.

• decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)
• Lossy Compression. decoding approximates original text: D(E(S)) º S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

The Data Compression Task
Terminology.

• source text: string S 2ß§
S

to be stored/transmitted

• ßS is some alphabet, e.g., Roman alphabet
• coded text: encoded data C 2ß§

C
that is actually stored/transmitted

• typically have ßC = {0,1}
• encoding: An algorithm E that maps source texts to coded texts

• E :ß§
S
!ß§

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :ß§
C
!ß§

S

Lossy vs. Lossless Compression.
• Lossless Compression. decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)

• Lossy Compression. decoding approximates original text: D(E(S)) º S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

W
- -

The Data Compression Task
Terminology.

• source text: string S 2ß§
S

to be stored/transmitted

• ßS is some alphabet, e.g., Roman alphabet
• coded text: encoded data C 2ß§

C
that is actually stored/transmitted

• typically have ßC = {0,1}
• encoding: An algorithm E that maps source texts to coded texts

• E :ß§
S
!ß§

C

• decoding: An algorithm D that maps encoded texts to decoded texts

• D :ß§
C
!ß§

S

Lossy vs. Lossless Compression.
• Lossless Compression. decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)
• Lossy Compression. decoding approximates original text: D(E(S)) º S

• Examples: mp3 (audio), jpg (image), mpg (video)

6 / 30

*

The Data Compression Task
Terminology.

• source text: string S 2ß§
S

to be stored/transmitted
• ßS is some alphabet, e.g., Roman alphabet

• coded text: encoded data C 2ß§
C

that is actually stored/transmitted
• typically have ßC = {0,1}

• encoding: An algorithm E that maps source texts to coded texts
• E :ß§

S
!ß§

C

• decoding: An algorithm D that maps encoded texts to decoded texts
• D :ß§

C
!ß§

S

Lossy vs. Lossless Compression.
• Lossless Compression. decoding recovers original text: D(E(S)) = S

• Examples: zip (general archive), flac (audio), tiff (image)
• Lossy Compression. decoding approximates original text: D(E(S)) º S

• Examples: mp3 (audio), jpg (image), mpg (video)

Our Focus: lossless compression!
6 / 30

3
-

The Quality of an Encoding Scheme
Goals of Encoding

• Efficiency of encoding/decoding

• resilience to errors/noise in transmission

• security (encryption)

• integrity (detect modifications)

• size

7 / 30

~

-

The Quality of an Encoding Scheme
Goals of Encoding

• Efficiency of encoding/decoding

• resilience to errors/noise in transmission

• security (encryption)

• integrity (detect modifications)

• size

Our focus. Minimize the size of the encoded text.

• data compression

7 / 30

The Quality of an Encoding Scheme
Our focus. Minimize the size of the encoded text.

• data compression

Measure of quality. The compression ratio:

|C| · log |ßC |ØØS · log |ßS|
ØØ

ßC={0,1}= |C|
|S| · log |ßS|

7 / 30

The Quality of an Encoding Scheme
Our focus. Minimize the size of the encoded text.

• data compression

Measure of quality. The compression ratio:

|C| · log |ßC |ØØS · log |ßS|
ØØ

ßC={0,1}= |C|
|S| · log |ßS|

Question. Why all of the log |ß|s?

7 / 30

The Quality of an Encoding Scheme
Our focus. Minimize the size of the encoded text.

• data compression

Measure of quality. The compression ratio:

|C| · log |ßC |ØØS · log |ßS|
ØØ

ßC={0,1}= |C|
|S| · log |ßS|

Question. Why all of the log |ß|s?

• ß
logæ

®
is the minimum number of bits needed to represent æ

distinct values (in binary)

• there are 2b distinct binary strings of length b

7 / 30

↳ encode, se
It char cloudy -># bitstoencoa

Wi
↑ Clength)(bits Hercharext.

o <zb to rep & dist. chars.

=> logs
? I WIb bits

The Quality of an Encoding Scheme
Our focus. Minimize the size of the encoded text.

• data compression

Measure of quality. The compression ratio:

|C| · log |ßC |ØØS · log |ßS|
ØØ

ßC={0,1}= |C|
|S| · log |ßS|

Interpretation. Compression ratios:
< 1 =) compression

• smaller values are better

= 1 =) no compression
> 1 =) encoded text is larger(?!)

• this is sometimes unavoidable . . . foreshadowing to next week

7 / 30

Data Compression Roadmap
Questions. When, how, and how much can we compress?

• Part I: Exploiting non-uniform character frequencies
• Huffman Codes

• Interlude: Limits of data compression

• Part II: Exploiting repetition in texts
• Run-length encoding
• Lempel-Ziv-Welch (LZW) encoding

• Part III: Creating repetition in texts
• Move-to-front transform
• Burrows-Wheeler transform

8 / 30

3

Character
Encoding

Question. How do computers encoded English language text?

10 / 30

I

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

• all characters treated equally

• 27 = 128 possible characters

10 / 30

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

• all characters treated equally

• 27 = 128 possible characters

Modern answer. Unicode
• ª 150,000 representable characters (different scripts, emoji, etc.)

• several encoding schemes character ! bits

• different characters’ representations can have different lengths

• e.g., ASCII characters represented by 8 bits

10 / 30

-/ Fixedth

- 77
Diff lengths
for diff

chars .

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

• all characters treated equally

• 27 = 128 possible characters

Modern answer. Unicode
• ª 150,000 representable characters (different scripts, emoji, etc.)

• several encoding schemes character ! bits

• different characters’ representations can have different lengths

• e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E :ßS !ß§
C

• typically, |ßS|¿ |ßC | (= 2), so need several bits per character

• for c 2ßS, call E(c) the codeword of c

• to encode a text, encode individual characters and concatenate

10 / 30

W
-

-

ELA) = 0001 AAB - 0001000

E(B) = 0010 0010...

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

• all characters treated equally
• 27 = 128 possible characters

Modern answer. Unicode
• ª 150,000 representable characters (different scripts, emoji, etc.)
• several encoding schemes character ! bits
• different characters’ representations can have different lengths

• e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E :ßS !ß§
C

• typically, |ßS|¿ |ßC | (= 2), so need several bits per character
• for c 2ßS, call E(c) the codeword of c

• to encode a text, encode individual characters and concatenate

Fixed vs. Variable Length Encoding
• fixed length encoding =) all codewords have the same length

(e.g. ASCII)
• variable length encoding =) different lengths for different

codewords (e.g. Unicode)
10 / 30

Fixed Length Codes
Advantages of fixed length codes

• fast decoding
• use a lookup-table
• can be as fast as a single array access

• local encoding
• if character length is B, ith character starts at index i ·B

Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
• Inflexible (non-extensible)

• how can we represent this awesome new emoji???
• Space inefficient

• infrequently used characters require as much space as common
characters

• common characters are longer than they need to be

11 / 30

Fixed Length Codes
Advantages of fixed length codes

• fast decoding
• use a lookup-table
• can be as fast as a single array access

• local encoding
• if character length is B, ith character starts at index i ·B

Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
• Inflexible (non-extensible)

• how can we represent this awesome new emoji???
• Space inefficient

• infrequently used characters require as much space as common
characters

• common characters are longer than they need to be

11 / 30

-

p I.......................)

Fixed Length Codes
Advantages of fixed length codes

• fast decoding
• use a lookup-table
• can be as fast as a single array access

• local encoding
• if character length is B, ith character starts at index i ·B

Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
• Inflexible (non-extensible)

• how can we represent this awesome new emoji???
• Space inefficient

• infrequently used characters require as much space as common
characters

• common characters are longer than they need to be
11 / 30

Variable Length Codes
Variable Length
Advantages:

• more flexibility

• compressibility?

12 / 30

Variable Length Codes
Variable Length
Advantages:

• more flexibility

• compressibility?

An old idea. Morse Code

• encode characters as
“dots” and “dashes”

• more common
characters are shorter

12 / 30

↳

Variable Length Codes
Variable Length
Advantages:

• more flexibility

• compressibility?

An old idea. Morse Code

• encode characters as
“dots” and “dashes”

• more common
characters are shorter

Question. How many
characters in the Morse
code encoding?

12 / 30

↓ I

3 letters in Ea

· (pause)

Codes Misbehaving

PollEverywhere

Consider the following code

c a n b s
E(c) 0 10 110 100

What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13 / 30

Banana

Bass
100
-- --

NAS

-
BANANA

BASS

Codes Misbehaving

Question. What was the issue with this
code?

PollEverywhere

Consider the following code

c a n b s
E(c) 0 10 110 100

What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13 / 30

D #

Codes Misbehaving

Question. What was the issue with this
code?

• The relationship between
E(n) = 10 and E(s) = 100

• If we read 10 in the encoded
text, are we done reading a
character?

• “Reasonable” codes should avoid
this ambiguity!

• We should always know when
we’re done reading a character.

PollEverywhere

Consider the following code

c a n b s
E(c) 0 10 110 100

What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13 / 30

Codes Misbehaving

Question. What was the issue with this
code?

• The relationship between
E(n) = 10 and E(s) = 100

• If we read 10 in the encoded
text, are we done reading a
character?

• “Reasonable” codes should avoid
this ambiguity!

• We should always know when
we’re done reading a character.

PollEverywhere

Consider the following code

c a n b s
E(c) 0 10 110 100

What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13 / 30

Prefix Codes and Tries
Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code

Example.
c A E N O T �

E(c) 01 101 001 100 11 000

14 / 30

E--

cos0
Word

can't have

01101 ???

as another
Lockword

Prefix Codes and Tries
Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code

Example.
c A E N O T �

E(c) 01 101 001 100 11 000

Representation of prefix codes: the trie data structure!

• binary tree

• one leaf for each character

• edges labeled 0 or 1

• codewords = paths to leaves
0

N
1

0
A

1

0

O
0

E
1

0
T

1

1

14 / 30

lookup

D table

& associati

%
frie

101

Prefix Codes and Tries
Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code

Example.
c A E N O T �

E(c) 01 101 001 100 11 000

Representation of prefix codes: the trie data structure!

• binary tree

• one leaf for each character

• edges labeled 0 or 1

• codewords = paths to leaves
0

N
1

0
A

1

0

O
0

E
1

0
T

1

1

Encoding. Use the table: AN�ANT

Decoding. Use the trie: 111000001010111

14 / 30

WW Preferty

·a
-> 0 , 0010000100111

#

Trie it Yourself

PollEverywhere Question

What is the result of using the trie
on the right to decode the message:
1100100100111

pollev.com/comp526

A

0

N

0

B

0

S

1

1

1

15 / 30

t

111 *
BANANAS

Fixed, Static, Adaptive
Note. In order to use a prefix code, we must also store the codewords!

• fixed coding uses the same code for all strings
• e.g. ASCII, Unicode encodings (UTF-8)

• static coding uses the same codeword for each instance of a
character in a text

• codewords may different for different texts
• must store/transmit the codewords as well as the encoded text!

• adaptive coding may change the codewords as the text is
processed

• codewords are stored implicitly within the coded message

16 / 30

I

[1

Huffman Codes

Variable Length and Compression
Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
• ß= {A,G,H,!}

• Fixed length encoding:

c A G H !
E(c) 00 01 10 11

=) Total encoded length = 30 (15 chars at 2 bits per char)

• Exploiting frequency of A and G
c A G H !

E(c) 0 10 110 111
=) Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18 / 30

Variable Length and Compression
Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
• ß= {A,G,H,!}

• Fixed length encoding:

c A G H !
E(c) 00 01 10 11

=) Total encoded length = 30 (15 chars at 2 bits per char)

• Exploiting frequency of A and G
c A G H !

E(c) 0 10 110 111
=) Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18 / 30

-

Variable Length and Compression
Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
• ß= {A,G,H,!}

• Fixed length encoding:

c A G H !
E(c) 00 01 10 11

=) Total encoded length = 30 (15 chars at 2 bits per char)

• Exploiting frequency of A and G
c A G H !

E(c) 0 10 110 111
=) Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18 / 30

#B
1 32

↓

Variable Length and Compression
Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
• ß= {A,G,H,!}

• Fixed length encoding:

c A G H !
E(c) 00 01 10 11

=) Total encoded length = 30 (15 chars at 2 bits per char)

• Exploiting frequency of A and G
c A G H !

E(c) 0 10 110 111
=) Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18 / 30

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet ß;

• weights w(c) ∏ 0 for each c 2ß.

Find the prefix code E for ß that minimizes
P

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
P

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?

• I suppose we can with brute force: check all prefix codes
• runs in exponential time in |ß|

• Can we solve it efficiently?

19 / 30

&
- encoca

L

*
- weightearacter

Invitively :

W(l) large ,
want to make IEC) smaller

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet ß;

• weights w(c) ∏ 0 for each c 2ß.

Find the prefix code E for ß that minimizes
P

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
P

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?

• I suppose we can with brute force: check all prefix codes
• runs in exponential time in |ß|

• Can we solve it efficiently?

19 / 30

J
#D - want as smallbe
&im length

c appears

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet ß;

• weights w(c) ∏ 0 for each c 2ß.

Find the prefix code E for ß that minimizes
P

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
P

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?

• I suppose we can with brute force: check all prefix codes
• runs in exponential time in |ß|

• Can we solve it efficiently?

19 / 30

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet ß;

• weights w(c) ∏ 0 for each c 2ß.

Find the prefix code E for ß that minimizes
P

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
P

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?
• I suppose we can with brute force: check all prefix codes

• runs in exponential time in |ß|

• Can we solve it efficiently?

19 / 30

3

Exploiting Character Frequency
Generic Optimization Problem. Suppose we are given

• a string S over the alphabet ß;

• weights w(c) ∏ 0 for each c 2ß.

Find the prefix code E for ß that minimizes
P

c w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of c in S.

• note that
P

c w(c) |E(c)| = |E(S)|
• so solving optimization problem gives the shortest possible

(prefix code) encoding of S!

Question. Can we solve the optimization problem?
• I suppose we can with brute force: check all prefix codes

• runs in exponential time in |ß|
• Can we solve it efficiently?

19 / 30
-

Huffman Coding: Greed is Good
Idea. Build the character trie greedily from the leaves up.

• Prefix codes are binary trees with leaves labeled by ß

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c 2ß
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v

3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

20 / 30

-

M
)

Huffman Coding: Greed is Good
Idea. Build the character trie greedily from the leaves up.

• Prefix codes are binary trees with leaves labeled by ß

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c 2ß
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v

3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

20 / 30

I

Huffman Coding: Greed is Good
Idea. Build the character trie greedily from the leaves up.

• Prefix codes are binary trees with leaves labeled by ß

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c 2ß
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v

3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

20 / 30

-

Huffman Coding: Greed is Good
Idea. Build the character trie greedily from the leaves up.

• Prefix codes are binary trees with leaves labeled by ß

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c 2ß
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v

3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

Example.
• ß= {A,B,C,D,E}

• weights = {0.25,0.15,0.1,0.1,0.4}

20 / 30

⑯

& I:

LOSSLESS Example
Example. Find the Huffman encoding for the text LOSSLESS.

Three Steps:

1. Compute frequency counts w(c)

2. Build Huffman tree

3. Write Huffman code from the tree

21 / 30

weights : letter frequencies :

- -

L : 00

0 : 010

S : /

i E : 01

#
do1000111

LOSSLESS Example
Example. Find the Huffman encoding for the text LOSSLESS.

Three Steps:

1. Compute frequency counts w(c)

2. Build Huffman tree

3. Write Huffman code from the tree

21 / 30

~
g

(can build lookupitable as well).

Huffman Analysis: Greed Works

Theorem
Given alphabet ß and weight function w :ß! R∏0, the Huffman coding

schemes gives the minimum weighted codeword length

`(E) =P
c2ßw(c) · |E(c)| among all prefix codes.

Proof sketch. Induction on |ß|
• Let E

§ be an optimal encoding/trie

• Claim: 9 sibling leaves x,y at max depth

• Swap x and y for two min weight leaves, a,b

• Optimal code for ß0 =ß\ {a,b}[
©

ab
™

gives optimal
code for ß (verify this!)

• By inductive hypothesis, Huffman gives optimal code
for ß0

• So we get an optimal code for ß ⇤

22 / 30

-

Huffman Analysis: Greed Works

Theorem
Given alphabet ß and weight function w :ß! R∏0, the Huffman coding

schemes gives the minimum weighted codeword length

`(E) =P
c2ßw(c) · |E(c)| among all prefix codes.

Proof sketch. Induction on |ß|
• Let E

§ be an optimal encoding/trie

• Claim: 9 sibling leaves x,y at max depth

• Swap x and y for two min weight leaves, a,b

• Optimal code for ß0 =ß\ {a,b}[
©

ab
™

gives optimal
code for ß (verify this!)

• By inductive hypothesis, Huffman gives optimal code
for ß0

• So we get an optimal code for ß ⇤

22 / 30

Ind . hyp:on,alphabeaerem opt trie
of size

E

-

holds

i
swappingCasEce)
%Emerged ab

Huffman Computational Efficiency
Question. For an alphabet of size m = |ß| and weights w, how
efficiently can we build the Huffman code?

• Maintain a collection A of active vertices

• Initially A is set of leaves, labeled with

1. a character c 2ß
2. the weight w(c)

• While |A| > 1:

1. u and v are two lightest vertices
2. add parent p to u and v

3. set w(p) = w(u)+w(v)
4. add p to A, remove u,v

• Construct the codeword table

23 / 30

m alphabet size t

am) [
Priority Queuemar-yoil]Olmlogm) to
build ↳
+ loymper Omlog Se

Tie Breaking Rules
So far we have two ambiguities in our Huffman trie description:

1. Which child is right/left child of the parent?

2. What do we do if weights are tied?

Conventions.
• Smaller weight child is on the left
• All ties broken by earliest character in alphabetical order

• for internal vertices, the one containing the alphabetically first
character as a descendant is on the left

24 / 30

-

-

Tie Breaking Rules
So far we have two ambiguities in our Huffman trie description:

1. Which child is right/left child of the parent?

2. What do we do if weights are tied?

Conventions.
• Smaller weight child is on the left
• All ties broken by earliest character in alphabetical order

• for internal vertices, the one containing the alphabetically first
character as a descendant is on the left

24 / 30

↳D

Huffman and
Entropy

A Thought Experiment
Suppose I have an alphabet ß= {c1,c2, . . . ,cn} and I choose a character
ci at random to transmit

• each ci is chosen with probability pi.

Idea. Think of pi as sub-intervals of [0,1].

• Outcome is a random point x in [0,1]

• ci corresponds to the interval containing x

• Use binary search to find the interval!

• If the interval has width pi need log(1/pi) queries to determine
interval

• The expected (average) number of queries is then

H (p1,p2, . . . ,pn) =P
n

i=1 pi log
≥

1
pi

¥

• H is the entropy of the distribution over ß

26 / 30

A Thought Experiment
Suppose I have an alphabet ß= {c1,c2, . . . ,cn} and I choose a character
ci at random to transmit

• each ci is chosen with probability pi.

Idea. Think of pi as sub-intervals of [0,1].

• Outcome is a random point x in [0,1]

• ci corresponds to the interval containing x

• Use binary search to find the interval!

• If the interval has width pi need log(1/pi) queries to determine
interval

• The expected (average) number of queries is then

H (p1,p2, . . . ,pn) =P
n

i=1 pi log
≥

1
pi

¥

• H is the entropy of the distribution over ß

26 / 30

P
,
+Prt - + Pu = 1

T
↳

A Thought Experiment
Suppose I have an alphabet ß= {c1,c2, . . . ,cn} and I choose a character
ci at random to transmit

• each ci is chosen with probability pi.

Idea. Think of pi as sub-intervals of [0,1].

• Outcome is a random point x in [0,1]

• ci corresponds to the interval containing x

• Use binary search to find the interval!

• If the interval has width pi need log(1/pi) queries to determine
interval

• The expected (average) number of queries is then

H (p1,p2, . . . ,pn) =P
n

i=1 pi log
≥

1
pi

¥

• H is the entropy of the distribution over ß

26 / 30

-
probofpickina
>

- itsmitted
0 loan (pin)

Properties of Entropy
Setup. We choose elements from ß= {c1,c2, . . . ,cn} randomly, each ci

chosen with probability pi.

One can show:
• Entropy H is a lower bound on the average number of bits

needed to transmit a random character from ß

• If we use a Huffman encoding of ß
• weights w(ci) = pi

• transmit the Huffman codeword E(ci)

Then the average length `(E) of the transmitted word satisfies

H ∑ `(E) ∑H +1

27 / 30

Properties of Entropy
Setup. We choose elements from ß= {c1,c2, . . . ,cn} randomly, each ci

chosen with probability pi.

One can show:
• Entropy H is a lower bound on the average number of bits

needed to transmit a random character from ß

• If we use a Huffman encoding of ß
• weights w(ci) = pi

• transmit the Huffman codeword E(ci)

Then the average length `(E) of the transmitted word satisfies

H ∑ `(E) ∑H +1

27 / 30

*Do

Properties of Entropy
Setup. We choose elements from ß= {c1,c2, . . . ,cn} randomly, each ci

chosen with probability pi.

One can show:
• Entropy H is a lower bound on the average number of bits

needed to transmit a random character from ß

• If we use a Huffman encoding of ß
• weights w(ci) = pi

• transmit the Huffman codeword E(ci)

Then the average length `(E) of the transmitted word satisfies

H ∑ `(E) ∑H +1

Conclusion. Huffman coding gives (nearly) the best possible average

compression for randomly generated texts!

27 / 30

Emprical Entropy
Definitions. For a fixed string S over alphabet ß= {c1,c2, . . . ,cæ}, we
define the relative frequency of character ci in S to be

pi =
occurrances of ci in S

|S|

The empirical entropy of S is then

H0(S) =H (p1,p2, . . . ,pæ).

The length of the Huffman encoded text C = E(S) is

|C| =
æX

i=1
|S|ai

|E(ci)| = n

nX

i=1
pi |E(ci)| = n`(E).

Applying the previous slide gives H0(S)n ∑ |C|∑ (H0(S)+1)n.
• Entropy and Huffman coding length are intimately connected

28 / 30

0

Emprical Entropy
Definitions. For a fixed string S over alphabet ß= {c1,c2, . . . ,cæ}, we
define the relative frequency of character ci in S to be

pi =
occurrances of ci in S

|S|

The empirical entropy of S is then

H0(S) =H (p1,p2, . . . ,pæ).

The length of the Huffman encoded text C = E(S) is

|C| =
æX

i=1
|S|ai

|E(ci)| = n

nX

i=1
pi |E(ci)| = n`(E).

Applying the previous slide gives H0(S)n ∑ |C|∑ (H0(S)+1)n.
• Entropy and Huffman coding length are intimately connected

28 / 30

- ↳

* -

Next Time

More Compression!
• Limits of Compressibility
• Compressing Repetitive Texts

29 / 30

Scratch Notes

30 / 30

