
Lecture 12: StringMatching III
COMP526: Efficient Algorithms

Updated: November 12, 2024
Will Rosenbaum
University of Liverpool

1 / 22

Announcements
1. Programming Assignment 1 DUE WEDNESDAY

• Use updated testing code (from last Wednesday)
• Submission through Canvas
• Only submit pr_tester.py
• Late Policy: 5% off per day down to 50%

2. Quiz due Friday
• Covers string matching

• including today’s lecture

• 2 questions (multiple choice)

3. Attendance Code:

2 / 22

Meeting Goals
Discuss String Matching procedures:

• Knuth-Morris-Pratt

• Boyer-Moore

3 / 22

The String Matching Problem
Input:

• A text T ∈Σ∗ of length n

• A pattern P ∈Σ∗ of length m

Output:

• The index of the first
occurrence of P in T

Last Time. Search with DFA

0 1 2 3 4 5 6 7

b,c

a b a b a c a

c b,c c b,c b,c

a
a b

a

Σ

4 / 22

The String Matching Problem
Input:

• A text T ∈Σ∗ of length n

• A pattern P ∈Σ∗ of length m

Output:

• The index of the first
occurrence of P in T

Last Time. Search with DFA

0 1 2 3 4 5 6 7

b,c

a b a b a c a

c b,c c b,c b,c

a
a b

a

Σ

Example: T = abababac
4 / 22

The String Matching Problem
Input:

• A text T ∈Σ∗ of length n

• A pattern P ∈Σ∗ of length m

Output:

• The index of the first
occurrence of P in T

Last Time. Search with DFA

0 1 2 3 4 5 6 7

b,c

a b a b a c a

c b,c c b,c b,c

a
a b

a

Σ

Result: Search in timeΘ(n+|Σ|n) with space overhead |Σ|n.
4 / 22

Knuth-Morris-
Pratt

Failure Link Automaton
DFA efficiency.

• Space/time to build DFA:Θ(m |Σ|)
• Time to execute DFA:Θ(n)

=⇒ Overall time isΘ(n+m |Σ|)
• additional space overhead isΘ(m |Σ|)

Question. Can we perform string matching in time O(n) with less space
overhead?

Idea. When comparison fails, don’t have a separate transition for each
failing character

• Just record failure and “shift” pattern as far forward as possible

6 / 22

Failure Link Automaton
DFA efficiency.

• Space/time to build DFA:Θ(m |Σ|)
• Time to execute DFA:Θ(n)

=⇒ Overall time isΘ(n+m |Σ|)
• additional space overhead isΘ(m |Σ|)

Question. Can we perform string matching in time O(n) with less space
overhead?

Idea. When comparison fails, don’t have a separate transition for each
failing character

• Just record failure and “shift” pattern as far forward as possible

6 / 22

Failure Link Automaton
Example

• T = aababaababacaa
• P = ababaca

0 1 2 3 4 5 6 7

c,d

a b a b a c a

× × × ×

× × Σ

text a a b a b a a b a b a c a a
states

7 / 22

States and Shifts

0 1 2 3 4 5 6 7

c,d

a b a b a c a

× × × ×

× × Σ

a a b a b a a b a b a c a a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

Correspondence: matches increment T index i, mismatches shift P
• shift amount aligns largest possible number of matches

8 / 22

FLA Execution
A Failure Link Automaton (FLA)
consists of:

• A finite set Q of states

• A finite alphabet Σ

• A transition function
ϕ : Q× (Σ∪ {×}) → Q

• An initial state q0 ∈ Q

• A set F ⊆ Q of accepting states

9 / 22

FLA Execution
A Failure Link Automaton (FLA)
consists of:

• A finite set Q of states

• A finite alphabet Σ

• A transition function
ϕ : Q× (Σ∪ {×}) → Q

• An initial state q0 ∈ Q

• A set F ⊆ Q of accepting states

Execution. To apply and FLA to T

• Start at the state q0

• Read characters from T
sequentially

• if in state q and read
character c:

• if ϕ(q,c) is defined, move
to state ϕ(q,c)

• otherwise move to state
ϕ(q,×) and re-read c

• Return TRUE if end in
“accepting” state

9 / 22

FLA Execution

PollEverywhere Question

Given an FLA for a pattern P of
length m, how many times could
we follow failure links for a single
character c read from T in the
worst case?

pollev.com/comp526

Execution. To apply and FLA to T

• Start at the state q0

• Read characters from T
sequentially

• if in state q and read
character c:

• if ϕ(q,c) is defined, move
to state ϕ(q,c)

• otherwise move to state
ϕ(q,×) and re-read c

• Return TRUE if end in
“accepting” state

9 / 22

https://pollev.com/comp526

FLA Execution
Execution. To apply and FLA to T

• Start at the state q0

• Read characters from T
sequentially

• if in state q and read
character c:

• if ϕ(q,c) is defined, move
to state ϕ(q,c)

• otherwise move to state
ϕ(q,×) and re-read c

• Return TRUE if end in
“accepting” state

9 / 22

FLA Running Time
More careful analysis

• If we match up to P[j], then we can only follow up to j back links

• In order to witness j failures, must have witnessed j successes!

Amortized cost of each character read from T
• If read character c is a match:

• pay 1 for comparison
• put 1 unit cost in the bank

• If read character c is a mismatch
• withdraw 1 from the bank

• By analysis above account balance is always non-negative

=⇒ amortized cost of each comparison is 2

=⇒ hence overall running time of execution is O(n)

10 / 22

FLA Running Time
More careful analysis

• If we match up to P[j], then we can only follow up to j back links

• In order to witness j failures, must have witnessed j successes!

Amortized cost of each character read from T
• If read character c is a match:

• pay 1 for comparison
• put 1 unit cost in the bank

• If read character c is a mismatch
• withdraw 1 from the bank

• By analysis above account balance is always non-negative

=⇒ amortized cost of each comparison is 2

=⇒ hence overall running time of execution is O(n)

10 / 22

FLA Construction
Observation. Each state q has

• 1 forward link to state q+1

• 1 fail link

Given P, we don’t need to store
forward link label:

• forward link label from q to
q+1 is P[q]

Only need to store fail link state!

• this can be stored as a single
array of size m

=⇒ only O(m) space overhead

11 / 22

FLA Construction
Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

• How do we construct it?

• Again x is length of largest prefix that
matches a suffix of P[1,q)

11 / 22

FLA Construction
Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

• How do we construct it?

• Again x is length of largest prefix that
matches a suffix of P[1,q)

Example. P[0..6) = ababaca

q 0 1 2 3 4 5 6

fail[q]

1: procedure FAILURELINK(P[0,m))
2: fail[0] ← 0
3: x ← 0
4: for j = 1,2, . . . ,m−1 do
5: fail[j] ← x
6: while P[x] ̸= P[j] do
7: if x = 0 then
8: x ←−1
9: break

10: else
11: x ← fail[x]
12: end if
13: end while
14: x ← x+1
15: end for
16: end procedure

11 / 22

FLA Construction
Question. What is the running
time of FAILURELINK on input of
size m?

1: procedure FAILURELINK(P[0,m))
2: fail[0] ← 0
3: x ← 0
4: for j = 1,2, . . . ,m−1 do
5: fail[j] ← x
6: while P[x] ̸= P[j] do
7: if x = 0 then
8: x ←−1
9: break

10: else
11: x ← fail[x]
12: end if
13: end while
14: x ← x+1
15: end for
16: end procedure

11 / 22

FLA Construction
Question. What is the running
time of FAILURELINK on input of
size m?

Observations.

• x incremented once per j

• fail[x] < x

• Each “while” iteration
decrements x

So at most 2m updates to x

• cf. amortized analysis

• x = bank balance

1: procedure FAILURELINK(P[0,m))
2: fail[0] ← 0
3: x ← 0
4: for j = 1,2, . . . ,m−1 do
5: fail[j] ← x
6: while P[x] ̸= P[j] do
7: if x = 0 then
8: x ←−1
9: break

10: else
11: x ← fail[x]
12: end if
13: end while
14: x ← x+1
15: end for
16: end procedure

11 / 22

Failue Links: 3 Views

0 1 2 3 4 5 6 7

c,d

a b a b a c a

× × × ×

× × Σ

a b a b a c a
a b a b a c a

a b a b a c a

q 0 1 2 3 4 5 6
fail[q] 0 0 0 1 2 3 0

fail[q] is
• the max of alignments

formed by shifting P if first
mismatch at P[q]

• longest prefix of P[0,q) that
is a suffix of P[1,q)

12 / 22

Failue Links: 3 Views

0 1 2 3 4 5 6 7

c,d

a b a b a c a

× × × ×

× × Σ

a b a b a c a
a b a b a c a

a b a b a c a

q 0 1 2 3 4 5 6
fail[q] 0 0 0 1 2 3 0

fail[q] is
• the max of alignments

formed by shifting P if first
mismatch at P[q]

• longest prefix of P[0,q) that
is a suffix of P[1,q)

12 / 22

KMP Algorithm
Question. How do we apply the
failure link array to find a match?

13 / 22

KMP Algorithm
Question. How do we apply the
failure link array to find a match?

• Scan along T [0,n)
• index i

• Maintain position in P[0,m)
• index j
• current prefix match

• When T [i] = P[j], increment i
and j

• Otherwise, j ← fail[j]
• unless j = 0, then i ← i+1

13 / 22

KMP Algorithm
Question. How do we apply the
failure link array to find a match?

• Scan along T [0,n)
• index i

• Maintain position in P[0,m)
• index j
• current prefix match

• When T [i] = P[j], increment i
and j

• Otherwise, j ← fail[j]
• unless j = 0, then i ← i+1

1: procedure KMP(T [0..n),P[0..m))
2: fail ← FAILURELINK(P)
3: i ← 0
4: j ← 0
5: while i < n do
6: if T [i] = P[q] then
7: i ← i+1, j ← j+1
8: if j = m then return i− j
9: else

10: if j ≥ 1 then
11: j ← fail[j]
12: else
13: i ← i+1
14: end if
15: end if
16: end while
17: end procedure

13 / 22

KMP Algorithm
Analysis:
• Running time O(n+m)

• O(m) to build fail
• O(n) to apply KMP
• analysis uses amortized

analysis

• Additional space O(m)
• just need to store fail and

indices

1: procedure KMP(T [0..n),P[0..m))
2: fail ← FAILURELINK(P)
3: i ← 0
4: j ← 0
5: while i < n do
6: if T [i] = P[q] then
7: i ← i+1, j ← j+1
8: if j = m then return i− j
9: else

10: if j ≥ 1 then
11: j ← fail[j]
12: else
13: i ← i+1
14: end if
15: end if
16: end while
17: end procedure

13 / 22

KMP Algorithm
Analysis:
• Running time O(n+m)

• O(m) to build fail
• O(n) to apply KMP
• analysis uses amortized

analysis

• Additional space O(m)
• just need to store fail and

indices

Clean Takeaway:
fail[j] is the length of the longest
prefix of P[0..j] that is a suffix of
P[1..j]

1: procedure KMP(T [0..n),P[0..m))
2: fail ← FAILURELINK(P)
3: i ← 0
4: j ← 0
5: while i < n do
6: if T [i] = P[q] then
7: i ← i+1, j ← j+1
8: if j = m then return i− j
9: else

10: if j ≥ 1 then
11: j ← fail[j]
12: else
13: i ← i+1
14: end if
15: end if
16: end while
17: end procedure

13 / 22

KMP Example
Example. Find the failure link array for P[0,8) = BCBABCBA.

i 0 1 2 3 4 5 6 7
fail[i]

fail[j] is the length of the longest prefix of P[0..j) that is a suffix of P[1..j)

Visualization. See website.

14 / 22

KMP Example
Example. Find the failure link array for P[0,8) = BCBABCBA.

i 0 1 2 3 4 5 6 7
fail[i] 0 0 0 1 0 1 2 3

Visualization. See website.

14 / 22

KMP Example
Example. Find the failure link array for P[0,8) = BCBABCBA.

i 0 1 2 3 4 5 6 7
fail[i] 0 0 0 1 0 1 2 3

Interpretation. If T [i..i+ j) matches P[0..j), but T [i+ j] ̸= P[j], then
fail[j] is the maximum number matches between T [i+1, i+ j] and P.

1 2 3 4 5 6 7
B C B A B C B A

B C B A B C B A
B C B A B C B A

Visualization. See website.

14 / 22

KMP Example
Example. Find the failure link array for P[0,8) = BCBABCBA.

i 0 1 2 3 4 5 6 7
fail[i] 0 0 0 1 0 1 2 3

Interpretation. If T [i..i+ j) matches P[0..j), but T [i+ j] ̸= P[j], then
fail[j] is the maximum number matches between T [i+1, i+ j] and P.

1 2 3 4 5 6 7
B C B A B C B A

B C B A B C B A
B C B A B C B A

Visualization. See website.
14 / 22

DFA vs FLA
Question. Which is better? DFA matching or KMP algorithm?

• KMP has overall running time O(n+m)
• amortized 2 comparisons per T access

• DFA has overall running time O(n+m |Σ|)
• 1 comparison per T access
• |Σ| dependence

15 / 22

Boyer-Moore

BeyondWorst-Case Pattern Matching?
A Puzzle. Suppose we have

• P[0,4) = AAAA
• T [0,14) = BBBBBBBBBBBBBB

If we know P, what is the fewest number of accesses we can make to T
to certify that T does not contain P?

17 / 22

BeyondWorst-Case Pattern Matching?
A Puzzle. Suppose we have

• P[0,4) = AAAA
• T [0,14) = BBBBBBBBBBBBBB

If we know P, what is the fewest number of accesses we can make to T
to certify that T does not contain P?

? ? ? B ? ? ? B ? ? ? B ? ?
A A A A

A A A A
A A A A

17 / 22

BeyondWorst-Case Pattern Matching?
A Puzzle. Suppose we have

• P[0,4) = AAAA
• T [0,14) = BBBBBBBBBBBBBB

If we know P, what is the fewest number of accesses we can make to T
to certify that T does not contain P?

? ? ? B ? ? ? B ? ? ? B ? ?
A A A A

A A A A
A A A A

Observation.

• By starting comparisons from the end of P, we could eliminate
more possible alignments.

17 / 22

Two Heuristics
Strategy. To test match of P[0..m) with T [j..j+m), perform
comparisons from right to left

Heuristic 1. If we encounter T [i] that does not occur in P, shift P
entirely past index i.

T: · · · A B D C A A C A B C A · · ·
P: C A B C A

→ C A B C A

Heuristic 2. If we match on a suffix of P but mismatch at index i, shift
P to next alignment of suffix.

T: · · · A B D C A A C A B C A · · ·
P: C A B C A

→ C A B C A

18 / 22

Two Heuristics
Strategy. To test match of P[0..m) with T [j..j+m), perform
comparisons from right to left
Heuristic 1. If we encounter T [i] that does not occur in P, shift P
entirely past index i.

T: · · · A B D C A A C A B C A · · ·
P: C A B C A

→ C A B C A

Heuristic 2. If we match on a suffix of P but mismatch at index i, shift
P to next alignment of suffix.

T: · · · A B D C A A C A B C A · · ·
P: C A B C A

→ C A B C A

18 / 22

Two Heuristics
Strategy. To test match of P[0..m) with T [j..j+m), perform
comparisons from right to left
Heuristic 1. If we encounter T [i] that does not occur in P, shift P
entirely past index i.

T: · · · A B D C A A C A B C A · · ·
P: C A B C A

→ C A B C A

Heuristic 2. If we match on a suffix of P but mismatch at index i, shift
P to next alignment of suffix.

T: · · · A B D C A A C A B C A · · ·
P: C A B C A

→ C A B C A

18 / 22

Boyer-Moore Algorithm
Combining these heuristics gives the Boyer-Moore algorithm

• Compare alignments from right to left
• If we encounter T [i] that does not occur in P, shift P entirely past index i.
• If we match on a suffix of P but mismatch at index i, shift P to next alignment of

suffix

T: · · · A B D C A A C A B C A · · ·
P: C A B C A

→ C A B C A

T: · · · A B D C A A C A B C A · · ·
P: C A B C A

→ C A B C A

• Worst-case running time on P[0..m) and T [0..n) isΘ(nm)
• achieved if all instances of P must be reported
• can be improved toΘ(n+m+|Σ|) with some care if T does not

contain P
• Typical running time can be much better!

• For some random string models, expected running time is O(n/m)
• For English text, typically uses ∼ 0.25n comparisons if no match

• Space overhead isΘ(m+|Σ|)

19 / 22

Boyer-Moore Algorithm
Combining these heuristics gives the Boyer-Moore algorithm

• Compare alignments from right to left

• If we encounter T [i] that does not occur in P, shift P entirely past index i.

• If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix

Features of this approach:
• Worst-case running time on P[0..m) and T [0..n) isΘ(nm)

• achieved if all instances of P must be reported
• can be improved toΘ(n+m+|Σ|) with some care if T does not

contain P

• Typical running time can be much better!
• For some random string models, expected running time is O(n/m)
• For English text, typically uses ∼ 0.25n comparisons if no match

• Space overhead isΘ(m+|Σ|)

19 / 22

Boyer-Moore Algorithm
Combining these heuristics gives the Boyer-Moore algorithm

• Compare alignments from right to left

• If we encounter T [i] that does not occur in P, shift P entirely past index i.

• If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix

Features of this approach:
• Worst-case running time on P[0..m) and T [0..n) isΘ(nm)

• achieved if all instances of P must be reported
• can be improved toΘ(n+m+|Σ|) with some care if T does not

contain P

• Typical running time can be much better!
• For some random string models, expected running time is O(n/m)
• For English text, typically uses ∼ 0.25n comparisons if no match

• Space overhead isΘ(m+|Σ|)

19 / 22

Boyer-Moore Algorithm
Combining these heuristics gives the Boyer-Moore algorithm

• Compare alignments from right to left

• If we encounter T [i] that does not occur in P, shift P entirely past index i.

• If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix

Features of this approach:
• Worst-case running time on P[0..m) and T [0..n) isΘ(nm)

• achieved if all instances of P must be reported
• can be improved toΘ(n+m+|Σ|) with some care if T does not

contain P

• Typical running time can be much better!
• For some random string models, expected running time is O(n/m)
• For English text, typically uses ∼ 0.25n comparisons if no match

• Space overhead isΘ(m+|Σ|)

19 / 22

Summary of String Matching

• Brute Force:
• simplest description
• Θ(nm) running time
• O(1) space overhead

• DFA
• few comparisons (worst

case)
• Θ(n+m |Σ|) running time
• Θ(m |Σ|) space overhead

(DFA table)
• Knuth-Morris-Pratt

• simple description
• Θ(n+m) running time

(inc. all occurrences)
• Θ(m) space overhead (fail

array)

• Boyer-Moore

• efficient in practice
(English text)

• Θ(nm) worst case to find
all occurrences, can be as
small as O(n/m)

• Θ(m) overhead

• Rabin-Karp

• based on hashing
• generalizes beyond

one-dimensional strings
• expected running time

O(n+m)
• O(1) space overhead

20 / 22

Summary of String Matching

• Brute Force:
• simplest description
• Θ(nm) running time
• O(1) space overhead

• DFA
• few comparisons (worst

case)
• Θ(n+m |Σ|) running time
• Θ(m |Σ|) space overhead

(DFA table)

• Knuth-Morris-Pratt
• simple description
• Θ(n+m) running time

(inc. all occurrences)
• Θ(m) space overhead (fail

array)

• Boyer-Moore

• efficient in practice
(English text)

• Θ(nm) worst case to find
all occurrences, can be as
small as O(n/m)

• Θ(m) overhead

• Rabin-Karp

• based on hashing
• generalizes beyond

one-dimensional strings
• expected running time

O(n+m)
• O(1) space overhead

20 / 22

Summary of String Matching

• Brute Force:
• simplest description
• Θ(nm) running time
• O(1) space overhead

• DFA
• few comparisons (worst

case)
• Θ(n+m |Σ|) running time
• Θ(m |Σ|) space overhead

(DFA table)
• Knuth-Morris-Pratt

• simple description
• Θ(n+m) running time

(inc. all occurrences)
• Θ(m) space overhead (fail

array)

• Boyer-Moore

• efficient in practice
(English text)

• Θ(nm) worst case to find
all occurrences, can be as
small as O(n/m)

• Θ(m) overhead

• Rabin-Karp

• based on hashing
• generalizes beyond

one-dimensional strings
• expected running time

O(n+m)
• O(1) space overhead

20 / 22

Summary of String Matching

• Brute Force:
• simplest description
• Θ(nm) running time
• O(1) space overhead

• DFA
• few comparisons (worst

case)
• Θ(n+m |Σ|) running time
• Θ(m |Σ|) space overhead

(DFA table)
• Knuth-Morris-Pratt

• simple description
• Θ(n+m) running time

(inc. all occurrences)
• Θ(m) space overhead (fail

array)

• Boyer-Moore

• efficient in practice
(English text)

• Θ(nm) worst case to find
all occurrences, can be as
small as O(n/m)

• Θ(m) overhead

• Rabin-Karp

• based on hashing
• generalizes beyond

one-dimensional strings
• expected running time

O(n+m)
• O(1) space overhead

20 / 22

Summary of String Matching

• Brute Force:
• simplest description
• Θ(nm) running time
• O(1) space overhead

• DFA
• few comparisons (worst

case)
• Θ(n+m |Σ|) running time
• Θ(m |Σ|) space overhead

(DFA table)
• Knuth-Morris-Pratt

• simple description
• Θ(n+m) running time

(inc. all occurrences)
• Θ(m) space overhead (fail

array)

• Boyer-Moore

• efficient in practice
(English text)

• Θ(nm) worst case to find
all occurrences, can be as
small as O(n/m)

• Θ(m) overhead

• Rabin-Karp

• based on hashing
• generalizes beyond

one-dimensional strings
• expected running time

O(n+m)
• O(1) space overhead

20 / 22

Next Time

Data Compression!
• How much space do we need to store our

data?

21 / 22

Scratch Notes

22 / 22

	Knuth-Morris-Pratt
	Boyer-Moore

