	l				L										l		I											ſ		7	L	L	J	•		l	C	2		٢					
	١.	I.											I				I.													7			J				C		C	2					
000000	00	0.0	0 0 0		0	0	00	0	00	0 0	0	0	00	0			0 0		0	00	0.0	0	00) () 6.47	0 0	0	0 il 51 52	0.0	0	0 0 56 51	01	U (00	0	0.0	0	0 0	0 (0 (0 0		0		0 0	
1 1111	11	11	1	1	1	1.1	11	1	1	1	1	11	11	11		1	1	11	1	1 1	1	11	1 1	1	11	1	11	1 1	1	1 1	1	1 1	1 1	1	1 1	1	1 1	1	1	11	11	11	1	11	1
2 2 🛛 2 2 2	2 2	22	2 2 3	2 2	2 2	2	2 2	2 2	22	2 2		2 2	2 2	2 2	2 2	2	2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	22	2	22	2 2	2	22	2	2 2	2 2	2 2	22	2	22	2	2 2	2 2	2 2	2 2	2	2 2	2
333333	33	33	33	3 3	33	3		3 3	33	3 3	3	3	3 3	33	33	3	33		3 3	33	3 3	33	33	33	33	3	33	33	3	33	3	33	3 3	3 3	33	3	33	3 :	3 3	3 3	33	33	3	3	3
4 4 4 4 4 4	44	4 4	4 4 4	4 4	4 4	4 4	4 4	4	44	4 4	4	44	4 4	4 4	4 4	4	44	4	4	4 4	4 4	4 4	44	4	44	4	44	4 4	4	44	4	44	4 4	14	4 4	4	44	4 4	4	4 4		4 4	4	4	4
555555	5 5	5 5	55	5	5	5 5	5 5	5	55	5	5	55	5		5 5	I	55	5 5	i 5	5	5.5	55	5 5	5 S	55	5 !	55	5 5	5	55	5	5 5	5 5	i 5	55	5	55	5 !	i 5	5 5	5 5	5 5	5	5 5	5
666666	66	6	6	66	66	6 6	6 1	5 6	6 6	6 6	6	66	6 6	66	6 6	6	66	6 8	5 6	6 6	6.6	66	6 6	66	66	6	66	6 8	6	66	6	6 6	S B	5 6	6 6	6	66	6 1	5 5	6 F	5 6	66	5	6 6	6
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	77			77	7 7	7	7		7	7		7	77	11	7	77	7	7	7 7		77	7 1	17	7 ?	7	11	77	7	7 7		77	1	7	7 7		17	7	17	7	7	7	7		7

Lecture 12: String Matching III

COMP526: Efficient Algorithms

Updated: November 12, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Programming Assignment 1 DUE WEDNESDAY
 - Use updated testing code (from last Wednesday)
 - Submission through Canvas
 - · Only submit pr_tester.py pr_Sorter. PY
 - Late Policy: 5% off per day down to 50%
- 2. Quiz due Friday
 - Covers string matching
 - Jincluding today's lecture] 🖌 🛠
 - 2 questions (multiple choice)
- 3. Attendance Code:

174786

Meeting Goals

Discuss String Matching procedures:

- Knuth-Morris-Pratt 🧲
- Boyer-Moore 🦟

The String Matching Problem

Input:Output:• A text $T \in \Sigma^*$ of length n• The index of the first
occurrence of P in T• A pattern $P \in \Sigma^*$ of length m• The index of the first
occurrence of P in T• P• The index of the first
occurrence of P in T

The String Matching Problem

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length *m*

Last Time. Search with DFA

Output:

• The index of the **first** occurrence of *P* in *T*

Example: T = abababac

The String Matching Problem

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length *m*

Last Time. Search with DFA

Output:

• The index of the **first** occurrence of *P* in *T*

Fix

1 pos

Knuth-Morris-Pratt

Failure Link Automaton

DFA efficiency.

- Space/time to build DFA: $\Theta(m|\Sigma|)$
- Time to execute DFA: $\Theta(n)$
- \implies Overall time is $\Theta(n+m|\Sigma|)$
 - additional space overhead is $\Theta(m|\Sigma|)$

Question. Can we perform string matching in time *O*(*n*) with *less space overhead*?

Failure Link Automaton

DFA efficiency.

- Space/time to build DFA: $\Theta(m|\Sigma|)$
- Time to execute DFA: $\Theta(n)$
- \implies Overall time is $\Theta(n+m|\Sigma|)$
 - additional space overhead is $\Theta(m|\Sigma|)$

Question. Can we perform string matching in time *O*(*n*) with *less space overhead*?

Idea. When comparison fails, don't have a separate transition for each failing character

• Just record failure and "shift" pattern as far forward as possible

Failure Link Automaton

States and Shifts

Correspondence: matches increment *T* index *i*, mismatches shift *P*

· shift amount aligns largest possible number of matches

A **Failure Link Automaton** (**FLA**) consists of:

- A finite set *Q* of **states**
- A finite **alphabet** Σ
- A transition function $\varphi: Q \times (\Sigma \cup \{x\}) \to Q$
- An **initial state** $q_0 \in Q$
- A set $F \subseteq Q$ of **accepting states**

of matching chars aligned C current index of T

#5

A **Failure Link Automaton** (**FLA**) consists of:

- A finite set *Q* of **states**
- A finite alphabet Σ
- A transition function $\varphi: Q \times (\Sigma \cup \{x\}) \rightarrow Q$
- An **initial state** $q_0 \in Q$
- A set $F \subseteq Q$ of **accepting states**

Execution. To apply and FLA to *T*

- Start at the state *q*₀
- Read characters from *T* sequentially
 - if in state *g* and read character *c*:
 - if $\varphi(q, c)$ is defined move to state $\varphi(q, c)$
 - otherwise move to state $\varphi(q, \times)$ and **re-read** *c*
- Return TRUE if end in "accepting" state

PollEverywhere Question

Given an FLA for a pattern P of length m, how many times could we follow failure links for a single character c read from T in the worst case?

pollev.com/comp526

Execution. To apply and FLA to *T*

- Start at the state *q*₀
- Read characters from *T* sequentially
 - if in state *q* and read character *c*:
 - if φ(q, c) is defined, move to state φ(q, c)
 - otherwise move to state $\varphi(q, \times)$ and **re-read** *c*
- Return TRUE if end in "accepting" state

Execution. To apply and FLA to *T*

- Start at the state q₀
- Read characters from T sequentially
 - if in state *q* and read character c:
 - if $\varphi(q, c)$ is defined, move to state $\varphi(q, c)$
 - otherwise move to state $\varphi(q, \times)$ and **re-read** *c*
- Return TRUE if end in "accepting" state

FLA Running Time

More careful analysis

- If we match up to *P*[*j*], then we can only follow up to *j* back links
- In order to witness *j* failures, must have witnessed *j* successes!

FLA Running Time

More careful analysis

- If we match up to *P*[*j*], then we can only follow up to *j* back links
- In order to witness *j* failures, must have witnessed *j* successes!

Amortized cost of each character read from T

- If read character *c* is a **match**:
 - pay 1 for comparison 🗸
 - put 1 unit cost in the **bank** \checkmark
- If read character *c* is a **mismatch**
 - *withdraw* 1 from the bank
- By analysis above account balance is always non-negative
- \Rightarrow amortized cost of each comparison is 2
- \implies hence overall running time of execution is O(n)

Worst case -> Zn comparisons when running on T(0, n). 10/22

2 from packet read (match)

Withraw I per mismatch

Observation. Each state q has

- 1 forward link to state q+1
- 1 fail link

Given *P*, we don't need to store forward link label:

• forward link label from q to q+1 is P[q]

Only need to store fail link state!

- this can be stored as a single array of size *m*
- \Rightarrow only O(m) space overhead

Definition. The **failure link array** *fail* of *P* the array of *m* numbers that stores the (index of) the next state for each failure

• How do we construct it?

Definition. The **failure link array** *fail* of *P* the array of *m* numbers that stores the (index of) the next state for each failure

- How do we construct it?
- Again *x* is length of largest prefix that matches a suffix of P[1,q]

Example. P[0..6) = ababaca

q	0	1	2	3	4	5	6
fail[q]	0	0	0	١	2	3	0

1: procedure FAILURELINK(
$$P[0, m)$$
)
2: $fail[0] \leftarrow 0$
3: $r x \leftarrow 0$ $price work (M)$
4: for $j = 1, [2], ..., m-1$ do
5: $\rightarrow fail[j] \leftarrow x$
6: while $P[x] \neq P[j]$ do
7: $if x = 0$ then
8: $x \leftarrow -1$
9: $break$
10: $else$
11: $x \leftarrow fail[x]$ update
12: end if
13: end while
14: $[x \leftarrow x+1]$
15: end for
16: end procedure

$$x = 01, x = 0, j = 4$$

 $x = 3, j = 5$

Question. What is the running time of FAILURELINK on input of size *m*?

1: **procedure** FAILURELINK(*P*[0, *m*)) $fail[0] \leftarrow 0$ 2: 3: $x \leftarrow 0$ for j = 1, 2, ..., m - 1 do 4: 5: $fail[j] \leftarrow x$ while $P[x] \neq P[j]$ do 6: 7: if x = 0 then 8: $x \leftarrow -1$ te cremente 9: break 10: else 11: $x \leftarrow fail[x]$ 12: end if end while 13: 2 gets $x \leftarrow x + 1$ 14: 15: end for 16: end procedure

Question. What is the running time of FAILURELINK on input of size *m*?

Observations.

- *x* incremented once per *j*
- fail[x] < x
- Each "while" iteration decrements *x*

So at most 2m updates to x

- cf. amortized analysis
- x = bank balance

1: **procedure** FAILURELINK(
$$P[0, m)$$
)
2: $fail[0] \leftarrow 0$
3: $x \leftarrow 0$
4: **for** $j = 1, 2, ..., m-1$ **do**
5: $fail[j] \leftarrow x$
6: **while** $P[x] \neq P[j]$ **do**
7: $gift x = 0$ **then**
8: $x \leftarrow -1$
9: **break**
10: **break**
10: **break**
11: $x \leftarrow -1$
12: **condification**
13: **condified**
14: $x \leftarrow x+1$
15: **end for**
16: **end procedure**

Failue Links: 3 Views

Failue Links: 3 Views

fail[*q*] is

- the max of alignments formed by shifting *P* if first mismatch at *P*[*q*]
- longest prefix of *P*[0, *q*) that is a suffix of *P*[1, *q*)

Question. How do we apply the failure link array to find a match?

Question. How do we apply the failure link array to find a match?

- Scan along *T*[0, *n*)
 - index *i*
- Maintain position in *P*[0, *m*)
 - index j
 - current prefix match
- When *T*[*i*] = *P*[*j*], increment *i* and *j*
- Otherwise, $j \leftarrow fail[j]$
 - unless j = 0, then $i \leftarrow i + 1$

Question. How do we apply the failure link array to find a match?

- Scan along *T*[0, *n*)
 - index *i*
- Maintain position in *P*[0, *m*)
 - index j
 - current prefix match
- When T[i] = P[j], increment *i* and *j*
- Otherwise, $j \leftarrow fail[j]$
 - unless j = 0, then $i \leftarrow i + 1$

```
1: procedure KMP(T[0..n), P[0..m))
        fail \leftarrow FAILURELINK(P)
 2:
 3:
         i \leftarrow 0
 4:
        i \leftarrow 0
         while i < n \operatorname{do}
 5:
             if T[i] = P[q] then
 6:
 7:
                 i \leftarrow i+1, j \leftarrow j+1
                 if j = m then return i - j
 8:
 9:
             else
                 if j \ge 1 then
10:
11:
                     j \leftarrow fail[j]
12:
                 else
                      i \leftarrow i + 1
13:
                 end if
14:
15:
             end if
16:
         end while
17: end procedure
```

Analysis:

- Running time O(n+m)
 - O(m) to build fail
 - O(n) to apply KMP
 - analysis uses **amortized analysis**

SER

- Additional space O(m)
 - just need to store *fail* and indices

1:	procedure KMP(<i>T</i> [0 <i>n</i>), <i>P</i> [0 <i>m</i>))	
2:	/fail – FAILURELINK(P) \mathcal{T}	·(m)
3:		
4:	<i>j</i> ← 0	
5:	while $i < n$ do	
6:	if $T[i] = P[q]$ then	$\mathcal{N}(\mathcal{N})$
7:	$i \leftarrow i+1, j \leftarrow j+1$	U
8:	if $j = m$ then return $i - m$	j
9:	else	
10:	if $j \ge 1$ then	
11:	$j \leftarrow fail[j]$	
12:	else	
13:	$i \leftarrow i + 1$	
14:	end if	
15:	end if	7
16:	end while	
17:	end procedure	

Fix ty

Analysis:

- Running time O(n+m)
 - O(m) to build fail
 - O(n) to apply KMP
 - analysis uses amortized analysis
- Additional space *O*(*m*)
 - just need to store *fail* and indices

Clean Takeaway:

fail[*j*] is the length of the longest prefix of P[0..] that is a suffix of P[1..j]

- 1: **procedure** KMP(*T*[0..*n*), *P*[0..*m*))
- $fail \leftarrow FAILURELINK(P)$ 2:
- 3: $i \leftarrow 0$
- 4: $i \leftarrow 0$
- 5: while $i < n \operatorname{do}$
- if T[i] = P[q] then 6: 7:
 - $i \leftarrow i+1, j \leftarrow j+1$
- 8: if j = m then return i - j9:
 - else
- 10: if $j \ge 1$ then
- 11: $j \leftarrow fail[j]$
- 12: else 13: $i \leftarrow i + 1$
- 14: end if
- 15: end if
- 16: end while
- 17: end procedure

Example. Find the failure link array for P[0,8) = BCBABCBA.

fail[j] is the length of the longest prefix of P[0..j] that is a suffix of P[1..j]

Example. Find the failure link array for P(0,8) = BCBABCBA.

i	0	1	2	3	4	5	6	7
fail[i]	0	0	0	1	0	1	2	3

Example. Find the failure link array for P[0,8) = BCBABCBA.

Interpretation. If T[i..i+j] matches P[0..j), but $T[i+j] \neq P[j]$, then fail[j] is the maximum number matches between T[i+1, i+j] and P.

Example. Find the failure link array for P[0,8) = BCBABCBA.

i	0	1	2	3	4	5	6	7
fail[i]	0	0	0	1	0	1	2	3

Interpretation. If T[i..i+j] matches P[0..j], but $T[i+j] \neq P[j]$, then fail[j] is the maximum number matches between T[i+1, i+j] and P.

Visualization. See website. Spot the bug!

DFA vs FLA

Question. Which is better? DFA matching or KMP algorithm?

- KMP has overall running time O(n+m)
 - amortized 2 comparisons per T access
- DFA has overall running time $O(n + m|\Sigma|)$
 - 1 comparison per *T* access —
 - |Σ| dependence

Boyer-Moore

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have

- P[0,4) = AAAA

If we know *P*, what is the fewest number of accesses we can make to *T* to **certify** that *T* does not contain *P*?

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have

- P[0,4) = AAAA

If we know *P*, what is the fewest number of accesses we can make to *T* to **certify** that *T* does not contain *P*?

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have

- P[0,4) = AAAA

If we know *P*, what is the fewest number of accesses we can make to *T* to **certify** that *T* does not contain *P*?

Observation.

• By starting comparisons from the *end* of *P*, we could eliminate more possible alignments.

Two Heuristics

Strategy. To test match of P[0..m) with T[j..j+m), perform comparisons from *right to left*

Two Heuristics

Strategy. To test match of P[0..m) with T[j..j+m), perform comparisons from *right to left* **Heuristic 1.** If we encounter T[i] that does not occur in *P*, shift *P* entirely past index *i*.

Two Heuristics

Strategy. To test match of P[0..m) with T[j..j+m), perform comparisons from *right to left* **Heuristic 1.** If we encounter T[i] that does not occur in *P*, shift *P* entirely past index *i*.

T:	•••	А	В	D	С	А	А	С	А	В	С	А	•••
P:		С	А	В	С	А							
				\rightarrow	С	А	В	С	А				

Heuristic 2. If we match on a suffix of *P* but mismatch at index *i*, shift *P* to next alignment of suffix.

Combining these heuristics gives the Boyer-Moore algorithm

- Compare alignments from right to left
- If we encounter *T*[*i*] that does not occur in *P*, shift *P* entirely past index *i*.
- If we match on a suffix of *P* but mismatch at index *i*, shift *P* to next alignment of suffix

T:	•••	А	В	D	С	А	А	С	А	В	С	А	
P:		С	А	В	С	А							
				\rightarrow	С	Α	В	С	А				
T:		А	В	D	С	А	А	С	Α	В	С	А	
P:					С	А	В	С	Α				
							\rightarrow	С	Α	В	С	А	

Combining these heuristics gives the Boyer-Moore algorithm

- Compare alignments from right to left
- If we encounter *T*[*i*] that does not occur in *P*, shift *P* entirely past index *i*.
- If we match on a suffix of *P* but mismatch at index *i*, shift *P* to next alignment of suffix

Features of this approach:

- Worst-case running time on P[0..m) and T[0..n) is $\Theta(nm)$
 - achieved if all instances of *P* must be reported
 - can be improved to $\Theta(n+m+|\Sigma|)$ with some care if *T* does not contain *P*

Combining these heuristics gives the **Boyer-Moore algorithm**

- Compare alignments from right to left
- If we encounter *T*[*i*] that does not occur in *P*, shift *P* entirely past index *i*.
- If we match on a suffix of *P* but mismatch at index *i*, shift *P* to next alignment of suffix

Features of this approach:

- Worst-case running time on P[0..m) and T[0..n) is $\Theta(nm)$
 - achieved if all instances of *P* must be reported
 - can be improved to $\Theta(n+m+|\Sigma|)$ with some care if *T* does not contain *P*
- Typical running time can be much better!
 - For some *random* string models, expected running time is O(n/m)
 - For English text, typically uses ~ 0.25*n* comparisons if no match

Combining these heuristics gives the **Boyer-Moore algorithm**

- Compare alignments from right to left
- If we encounter *T*[*i*] that does not occur in *P*, shift *P* entirely past index *i*.
- If we match on a suffix of *P* but mismatch at index *i*, shift *P* to next alignment of suffix

Features of this approach:

- Worst-case running time on P[0..m) and T[0..n) is $\Theta(nm)$
 - achieved if all instances of *P* must be reported
 - can be improved to $\Theta(n + m + |\Sigma|)$ with some care if *T* does not contain *P*
- Typical running time can be much better!
 - For some *random* string models, expected running time is O(n/m)
 - For English text, typically uses ~ 0.25n comparisons if no match
- Space overhead is $\Theta(m + |\Sigma|) \leftarrow$

• Brute Force:

- simplest description
- Θ(*nm*) running time
- O(1) space overhead

• Brute Force:

- simplest description
- Θ(*nm*) running time
- O(1) space overhead

• DFA

- few comparisons (worst case)
- $\Theta(n+m|\Sigma|)$ running time
- $\Theta(m|\Sigma|)$ space overhead (DFA table)

• Brute Force:

- simplest description
- Θ(*nm*) running time
- O(1) space overhead

• DFA

- few comparisons (worst case)
- $\Theta(n+m|\Sigma|)$ running time
- $\Theta(m|\Sigma|)$ space overhead (DFA table)
- Knuth-Morris-Pratt
 - simple description
 - $\Theta(n+m)$ running time (inc. all occurrences)
 - Θ(*m*) space overhead (fail array)

- Brute Force:
 - simplest description
 - Θ(*nm*) running time
 - O(1) space overhead
- DFA
 - few comparisons (worst case)
 - $\Theta(n+m|\Sigma|)$ running time
 - $\Theta(m|\Sigma|)$ space overhead (DFA table)
- Knuth-Morris-Pratt
 - simple description
 - $\Theta(n+m)$ running time (inc. all occurrences)
 - Θ(*m*) space overhead (fail array)

• Boyer-Moore

- efficient in practice (English text)
- $\Theta(nm)$ worst case to find all occurrences, can be as small as O(n/m)
- $\Theta(m)$ overhead + [Σ]

- Brute Force:
 - simplest description
 - Θ(*nm*) running time
 - O(1) space overhead
- DFA
 - few comparisons (worst case)
 - $\Theta(n+m|\Sigma|)$ running time
 - $\Theta(m|\Sigma|)$ space overhead (DFA table)
- Knuth-Morris-Pratt
 - simple description
 - $\Theta(n+m)$ running time (inc. all occurrences)
 - Θ(*m*) space overhead (fail array)

• Boyer-Moore

- efficient in practice (English text)
- Θ(*nm*) worst case to find all occurrences, can be as small as O(n/m)
- $\Theta(m)$ overhead
- Rabin-Karp
 - based on hashing
 - generalizes beyond one-dimensional strings
 - expected running time O(n+m)
 - O(1) space overhead

Next Time

Data Compression!

How much space do we need to store our data?

Scratch Notes