					Ľ,										Ľ,																													
- E				l					I										Ľ,																				l					
0000000	0 0 0	0 0	0 0 0	0 0	0	0 0	0 0	0 0	0	0	0 (U	0	0	0 0	0	0	0 (0 0	0 0	0 1	0 0	0 0		0 0	il (0 0	0.0	0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0		0) (
1 1 1 1 1 1 1	111	1	1	5 IБ	11	1 1	11	1	120	11	11	i 1	1	. 3.3 .	1	1	11	1 1	11	11	1	11	11	1	1 1	1	1 1	11	1	1 1	1	1 1	11	1	11	1	s /o 1 1	11	1	11	575 11	1	879 11	80 1
2 2 🛛 2 2 2 2 2	2 2 2	2 2	2 2 3	2 2	2	2 2	2 2	2 3	2	2	2 2	2 2	22	2	22	i.	22	2 2	2 2	22	2	22	2 2	2	22	2 :	2 2	2 2	2	2 2	2 2	2 2	22	2	22	2 :	2 2	2 2	2	2 2	2 2	2 2	2 2	2
3333333	333	33	33	33	3	3	3 3	33	3 3	3	3 3	3 3	33	3	33	3	3	3	33	33	3	33	33	3	33	3	33	33	3	33	3 (3	33	3	33	3	33	3 3	3	3 3	33	3 :	3	3
444444	444	44	4 4	4 4	44	44	4 4	4 4	4	44	4 4	4 4	4 4	4	44	4	4	4 4	4 4	4 4	4	44	4 4	4	44	4 4	4 4	44	4	44	4 4	4	44	4	4 4	4	4 4	4 4	4	4	4 4	4	4	4
5555555	555	5 5	5	5	55	5 5	5	5	5	55	5.5	5	5	5	5	5	55	5	5	55	5	55	5 5	5	55	5 !	5 5	5 5	5	55	5 5	5	55	5	55	5 !	55	5 5	5	5 5	5 5	5 5	5 5	5
6666666	6 🛛 6	6	66	66	66	66	6.6	6.6.6	66	66	6 6	6 6	66	6	66	6	66	6 (66	66	6	66	68	6	66	6	66	6 6	6	66	6 9	6	66	6	66	6	66	5 E	6	6 6	66	5 6	56	6
11111	111	77		7 7	7 7	7	7 1		77	77	1	1 1	7 7	7	7 7	7	11	Ľ	11	77	7	11	11	?	11	7	7 7	77	7	77	7	7	7 7	7		7	77			7	7			7

Lecture 11: String Matching II

COMP526: Efficient Algorithms

Updated: November 7, 2024

289105

Will Rosenbaum University of Liverpool

Announcements

1. NO QUIZ THIS WEEK!

- 2. Programming Assignment Posted
 - TESTING CODE UPDATED
 - small bug in tritonic array generation
 - download new version
 - Due Wednesday, 13 November
- 3. Attendance Code:

289105

Meeting Goals

Discuss String Matching procedures:

- Brute Force
- DFA procedure
- Knuth-Morris-Pratt

String Matching

The String Matching Problem

Input:

- A text $T \in \Sigma^*$ of length *n*
- A pattern $P \in \Sigma^*$ of length *m* (typically $m \ll n$)

Output:

- The index of the **first occurrence** of P in T, or -1 if T does not contain *P* as a substring:
 - $\min\{i \mid T[i, i+m) = P\}$

- Example. • T = 1011001101/1101
 - $P_1 = 1101$
 - Output: $i \leftarrow 6$
 - $P_2 = 000$
 - Output: *i* ← −1

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T[i, i+m) = P?
- verify each character individually

Cost = number of comparisons made

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T[i, i+m) = P?
- verify each character individually
 - 1: **procedure** VERIFYMATCH(*T*, *P*, *i*)

- 3: **while** *j* < *m* **do**
- 4: **if** $T[i+j] \neq P[j]$ **then**
- 5: return FALSE
- 6: **end if**

```
7: j \leftarrow j+1
```

- 8: end while
- 9: return True
- 10: end procedure

Cost = number of comparisons made

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T[i, i+m) = P?
- verify each character individually
 - 1: **procedure** VERIFYMATCH(*T*, *P*, *i*)
 - 2: $j \leftarrow 0$
 - 3: **while** *j* < *m* **do**
 - 4: **if** $T[i+j] \neq P[j]$ **then**
 - 5: return False
 - 6: **end if**
 - 7: $j \leftarrow j+1$
 - 8: end while
 - 9: return True
 - 10: end procedure

Cost = number of comparisons made

Parameters N = site of T PollEverywhere Question P

What are the worst case and best case running times of VERIFYMATCH?

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

• is T[i, i+m) = P?

Best and Worst Cases:

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T[i, i+m) = P?
- verify each character individually

Cost = number of comparisons made **Brute force.** Guess and check every value i = 0, 1, ..., n - m - 1

- Worst case running time is $\Theta(nm)$ 7
 - What is example has $\cot \Omega(nm)$?
- Best case cost is $\Theta(m)$

find match at index i= 0

T=aaaaaa...a

every char int is compared to every char in P

P= aad abx

Brute Force Example

Example

- T = abbbababbab
- P = abba

procedure

BRUTEFORCEMATCH(T, P)for i = 0, 1, ..., n - m - 1 do if VERIFYMATCH(T, P, i) then return i end if end for return -1end procedure

setus 6

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

> T = aaaaa - aP = aaa - ab

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?
- Which of these comparisons were unnecessary?
 - How can you search with fewer comparisons?

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?
- Which of these comparisons were unnecessary?
 - How can you search with fewer comparisons?

More generally: How can we use results of *previous comparisons* to avoid making unnecessary comparisons in the future?

• Goal: never re-read a character from *T*!

Matching with a DFA

Example

- T = aabababbabacaa
- P = ababaca

a a b a b a b b a b a b a c a a

- Scan through T keeping track of current matches
- Each new character T read, compare it to next character of P
- If mismatch slide *P* so that **longest prefix** of *P* matches

Example

- T = aabababbabacaa
- P = ababaca

- Scan through T keeping track of current matches
- Each new character T read, compare it to next character of P
- If mismatch slide *P* so that **longest prefix** of *P* matches

Example

- T = aabababbabacaa
- P = ababaca

Joht

- Scan through T keeping track of current matches
- Each new character T read, compare it to next character of P
- If mismatch slide *P* so that **longest prefix** of *P* matches

Example

- T = aabababbabacaa
- P = ababaca

- Scan through T keeping track of current matches
- Each new character T read, compare it to next character of P
- If mismatch slide *P* so that **longest prefix** of *P* matches

Example

- T = aabababbabacaa
- P = ababaca

- Scan through T keeping track of current matches
- Each new character T read, compare it to next character of P
- If mismatch slide *P* so that **longest prefix** of *P* matches

Representing States and Matches

Question. What information do we need to compute and store to determine next comparison?

Representing States and Matches

Question. What information do we need to compute and store to determine next comparison?

- How many matches in *P* have we made so far?
- What what is the longest matching prefix for each possible next character in *T*
 - if we read character *x*, how far do we need to "slide" *P* to match a prefix?

Representing States and Matches

Question. What information do we need to compute and store to determine next comparison?

- How many matches in *P* have we made so far?
- What what is the longest matching prefix for each possible next character in *T*
 - if we read character *x*, how far do we need to "slide" *P* to match a prefix?

Information to store

- states that represent number of matches with current prefix of P
- **transitions** from current state to next states, depending on next character read from *T*

Note. This information depends *only* on the pattern *P*, not the text *T*.

DFAs

A Deterministic Finite Automaton (DFA) consists of:

- A finite set *Q* of **states**
- A finite **alphabet** Σ
- A transition function $\delta : Q \times \Sigma \rightarrow Q$ —
- An **initial state** $q_0 \in Q$
- A set $F \subseteq Q$ of **accepting states**

rule: if in state 8 and read character c (in T) which state to

more

to

-()a, ()b, ()a, (3b (4)

DFAs

A Deterministic Finite Automaton (DFA) consists of:

- A finite set *Q* of **states**
- A finite **alphabet** Σ
- A transition function $\delta : Q \times \Sigma \rightarrow Q$
- An **initial state** $q_0 \in Q$
- A set $F \subseteq Q$ of **accepting states**

Interpretation. A DFA is used to determine if a string (text) *T* has some property (e.g., containing a pattern *P*):

- Start at the state q_0
- Read characters from T sequentially
 - if in state *q* and read character *c*, move to state $\delta(q, \sigma)$
- Return TRUE if end in "accepting" state

K Lubi

DFA Example

Example

- T = aabacaababacaa 👉
- P = ababaca

DFA Efficiency

PollEverywhere Question

Given a DFA for matching P[0, m) in T[0, n), what is the running time of applying the DFA? Assume following links is O(1) time.

- 1. $\Theta(nm)$
- 2. $\Theta(n\log m)$

3. $\Theta(n+m)$ 4. $\Theta(n)$

DFA Efficiency

Observe: If we are *given* a DFA, executing it

- reads each character of *T* once
- updates state once per character
- \Rightarrow running time O(n)

So the overall running time for pattern matching with a DFA is O(n) + time to build DFA/

• assuming computation of δ is O(1).

PollEverywhere Question

Given a DFA for matching P[0, m) in T[0, n), what is the running time of applying the DFA? Assume following links is O(1) time.

1.	$\Theta(nm)$	3.	$\Theta(n+m)$

2. $\Theta(n\log m)$ 4. $\Theta(n)$

DFA Efficiency

Observe: If we are *given* a DFA, executing it

- reads each character of *T* once
- updates state once per character
- \Rightarrow running time O(n)

So the overall running time for pattern matching with a DFA is O(n) + time to build DFA

• assuming computation of δ is O(1).

But how do we build the DFA?

PollEverywhere Question

Given a DFA for matching P[0, m) in T[0, n), what is the running time of applying the DFA? Assume following links is O(1) time.

1.	$\Theta(nm)$	3.	$\Theta(n+m)$
_	a. 1		

2. $\Theta(n \log m)$ 4. $\Theta(n)$

Semantic Question. What does it *mean* to be in state *q*?

Semantic Question. What does it *mean* to be in state *q*?

- Current position in *T* matches *P* up to the first *q* characters
- Symbolically T[j q + 1, j] = P[0, q)

Question. What happens when we read T[j+1]?

Semantic Question. What does it *mean* to be in state *q*?

- Current position in *T* matches *P* up to the first *q* characters
- Symbolically T[j-q+1,j] = P[0,q)

Question. What happens when we read T[j+1]?

- If T[j+1] = P[q], transition to state q+1
- If *T*[*j*+1] ≠ *P*[*q*], find the length *q*' ≤ *q* of the longest prefix of *P* that matches *T*[*j*-*q*', *j*+1] that matches *P*[0, *q*')

Semantic Question. What does it *mean* to be in state *q*?

- Current position in *T* matches *P* up to the first *q* characters
- Symbolically T[j-q+1,j] = P[0,q)

Question. What happens when we read T[j+1]?

- If T[j+1] = P[q], transition to state q+1
- If *T*[*j*+1] ≠ *P*[*q*], find the length *q*' ≤ *q* of the longest prefix of *P* that matches *T*[*j*-*q*', *j*+1] that matches *P*[0, *q*')

• **Insight:** if $\underline{T[j+1] = c}$ this is the same as matching $\underline{P[0..q]}$ against $\underline{P[1..q)}$

we can use the DFA constructed so far to find this!

- **Insight:** if T[j+1] = c this is the same as matching P[0..q] against P[1..q)c
 - we can use the DFA constructed so far to find this!

Inductive Construction.

• Start with states 0 and 1 with

$$\delta(0, c) = \begin{cases} 1 & \text{if } P[0] = c \\ 0 & \text{otherwise.} \end{cases}$$

• Once we've constructed DFA up to state *q*:

PC01

- take $\delta(q, P[q]) = q+1$
- for $c \neq P[q]$, find $\delta(q, c)$ by applying DFA to P[1, q]c

- **Insight:** if T[j+1] = c this is the same as matching P[0..q] against P[1..q)c
 - we can use the DFA constructed so far to find this!
- Once we've constructed DFA up to state *q*:
 - take $\delta(q, P[q]) = q+1$
 - for $c \neq P[q]$, find $\delta(q, c)$ by applying DFA to P[1, q]c

Example. Compute $\delta(5, \alpha)$ for P = ababaca.

Todo

Fix img

- **Insight:** if T[j+1] = c this is the same as matching P[0..q] against P[1..q)c
 - we can use the DFA constructed so far to find this!

Inductive Construction.

• Start with states 0 and 1 with

$$\delta(0, c) = \begin{cases} 1 & \text{if } P[0] = c \\ 0 & \text{otherwise.} \end{cases}$$

- Once we've constructed DFA up to state *q*:
 - take $\delta(q, P[q]) = q+1$
 - for $c \neq P[q]$, find $\delta(q, c)$ by applying DFA to P[1, q)c

Analysis (idea).

• Argue by induction on *q* that the DFA enters state *q* on reading T[j] if and only if *q* is the largest number such that T[j-q+1,j] = P[0,q).

DFA diagrams are great for humans, but not so great for computers...

DFA *diagrams* are great for humans, but not so great for computers... **Problems.**

- 1. How do we represent the DFA in a computer friendly format?
- 2. How do construct the DFA in that format efficiently?

Problems.

- 1. How do we represent the DFA in a computer friendly format?
- 2. How do construct the DFA in that format efficiently?

Solutions.

- 1. Store a **lookup table** δ [][]
 - columns = states, rows = characters
 - $\delta[q][c] \leftarrow \delta(q, c)$

Problems.

- 1. How do we represent the DFA in a computer friendly format?
- 2. How do construct the DFA in that format efficiently?

Solutions.

- 1. Store a **lookup table** δ [][]
 - columns = states, rows = characters
 - $\delta[q][c] \leftarrow \delta(q, c)$
- 2. Compute column by column
 - trick: keep track of state for *P*[1, *q*) because we'll reuse this for each *P*[1, *q*) *c*

Solutions.

- 1. Store a **lookup table** δ [][]
 - columns = states, rows = characters
 - $\delta[q][c] \leftarrow \delta(q, c)$
- 2. Compute column by column
 - trick: keep track of state for *P*[1, *q*) because we'll reuse this for each *P*[1, *q*)*c*
 - x is largest value with P[0,x] = P[q-x,q]

1:	procedure CONSTRUCTDFA(P[0m))
2:	for $c \in \Sigma$ do	- first
3:	$\delta[0][c] \leftarrow 0$	
4:	end for	\mathcal{O}
5:	$\delta[0][P[0]] \leftarrow 1$	
6:	$x \leftarrow 0 \leftarrow$	ilerate
7:	for $q = 1, 2,, m - 1$ do	7
8:	for $c \in \Sigma$ do	Over
9:	$\delta[q][c] \leftarrow \delta[x][c]$	(columns
10:	end for	
11:	$\delta[q][P[q]] \leftarrow q+1$	
12:	$x \leftarrow \delta[x][P[q]]$	
13:	end for	
14:	end procedure	

Example. P[0..6) = ababaca

1: **procedure** CONSTRUCTDFA(*P*[0..*m*))

- for $c \in \Sigma$ do 2:
- 3: $\delta[0][c] \leftarrow 0$
- end for 4:

5:
$$\delta[0][P[0]] \leftarrow 1$$

6: $r \leftarrow 0$

6:
$$x \leftarrow 0$$

7: **for** $q = 1, 2, ..., m - 1$ **do**

8: **for**
$$c \in \Sigma$$
 do
9: $\delta[q][c] \leftarrow \delta[x][c]$
10: **end for**

end for

$$\delta[q][P[q]] \leftarrow q+1$$

$$x \leftarrow \delta[x][P[q]]$$

7

8

9

11: 12:

14: end procedure

PollEverywhere Question

What is the running time of CONSTRUCTDFA when *P* has length *m* and $|\Sigma| = s$?

DFA Lookup Table Application

Pitting it Together

• Construct the DFA

Start at State O

• Apply the DFA

1: procedure APPLYDFA($T[0..n], \delta, m$) 2: $q \leftarrow 0$ 3: for i = 0, 1, ..., n - 1 do 4: $\sim q \leftarrow \delta[q][T[i]]$ if q = m then 5: return *i* 6: 7: end if 8: end for 9: return -1 10: end procedure 11: **procedure** DFAMATCH(*P*[0..*m*), *T*[0..*n*)) 12: $\delta \leftarrow \text{CONSTRUCTDFA}(P, T)$ **return** APPLYDFA(T, δ, m) 13: 14: end procedure

DFA Lookup Table Application

Pitting it Together

- Construct the DFA
- Apply the DFA
- Running time is $\Theta(n+m|\Sigma|)$
 - $\Theta(m|\Sigma|)$ for making DFA
 - $\Theta(n)$ for applying DFA
- Additional space overhead: Θ(m|Σ|)
 - store the DFA

1: procedure APPLYDFA($T[0..n], \delta, m$)

 $q \leftarrow 0$

2:

3:

4:

5:

6:

7:

- **for** i = 0, 1, ..., n-1 **do**
 - $q \leftarrow \delta[q][T[i]]$
 - if q = m then
 - return i
 - end if
- 8: end for
- 9: **return** −1
- 10: end procedure
- 11: **procedure** DFAMATCH(*P*[0..*m*), *T*[0..*n*))

12: $\delta \leftarrow \text{CONSTRUCTDFA}(P, T)$

- 13: **return** APPLYDFA(T, δ, m)
- 14: end procedure

be a lot of space

Knuth-Morris-Pratt

Failure Link Automaton

DFA efficiency.

- Space/time to build DFA: $\Theta(m|\Sigma|)$
- Time to execute DFA: $\Theta(n)$
- \implies Overall time is $\Theta(n+m|\Sigma|)$
 - additional space overhead is $\Theta(m|\Sigma|)$

Question. Can we perform string matching in time *O*(*n*) with *less space overhead*?

Failure Link Automaton

DFA efficiency.

- Space/time to build DFA: $\Theta(m|\Sigma|)$
- Time to execute DFA: $\Theta(n)$
- \implies Overall time is $\Theta(n+m|\Sigma|)$
 - additional space overhead is $\Theta(m|\Sigma|)$

Question. Can we perform string matching in time *O*(*n*) with *less space overhead*?

Idea. When comparison fails, don't have a separate transition for each failing character

• Just record failure and "shift" pattern as far forward as possible

Failure Link Automaton

Example

- T = aabacaababacaa
- P = ababaca

text	a	a	b	a	С	a	a	b	a	b	a	С	a	a
states														

A **Failure Link Automaton** (**FLA**) consists of:

- A finite set *Q* of **states**
- A finite **alphabet** Σ
- A transition function $\varphi: Q \times (\Sigma \cup \{x\}) \rightarrow Q$
- An **initial state** $q_0 \in Q$
- A set $F \subseteq Q$ of **accepting states**

A **Failure Link Automaton** (**FLA**) consists of:

- A finite set *Q* of **states**
- A finite alphabet Σ
- A transition function $\varphi: Q \times (\Sigma \cup \{x\}) \rightarrow Q$
- An **initial state** $q_0 \in Q$
- A set $F \subseteq Q$ of **accepting states**

Execution. To apply and FLA to *T*

- Start at the state q_0
- Read characters from *T* sequentially
 - if in state *q* and read character *c*:
 - if φ(q, c) is defined, move to state φ(q, c)
 - otherwise move to state $\varphi(q, \times)$ and **re-read** *c*
- Return TRUE if end in "accepting" state

PollEverywhere Question

Given an FLA for a pattern P of length m, how many times could we follow failure links for a single character c read from T in the worst case?

pollev.com/comp526

Execution. To apply and FLA to *T*

- Start at the state *q*₀
- Read characters from *T* sequentially
 - if in state *q* and read character *c*:
 - if φ(q, c) is defined, move to state φ(q, c)
 - otherwise move to state $\varphi(q, \times)$ and **re-read** *c*
- Return TRUE if end in "accepting" state

Execution. To apply and FLA to *T*

- Start at the state *q*₀
- Read characters from *T* sequentially
 - if in state *q* and read character *c*:
 - if φ(q, c) is defined, move to state φ(q, c)
 - otherwise move to state $\varphi(q, \times)$ and **re-read** *c*
- Return TRUE if end in "accepting" state

FLA Running Time

More careful analysis

- If we match up to *P*[*j*], then we can only follow up to *j* back links
- In order to witness *j* failures, must have witnessed *j* successes!

FLA Running Time

More careful analysis

- If we match up to *P*[*j*], then we can only follow up to *j* back links
- In order to witness *j* failures, must have witnessed *j* successes!

Amortized cost of each character read from T

- If read character *c* is a **match**:
 - pay 1 for comparison
 - put 1 unit cost in the **bank**
- If read character *c* is a **mismatch**
 - withdraw 1 from the bank
- By analysis above account balance is always non-negative
- \Rightarrow amortized cost of each comparison is 2
- \implies hence overall running time of execution is O(n)

Observation. Each state *q* has

- 1 forward link to state q+1
- 1 fail link

Given *P*, we don't need to store forward link label:

• forward link label from P[q] = P[q+1]

Only need to store fail link state!

- this can be stored as a single array of size *m*
- \implies only O(m) space overhead

Definition. The **failure link array** *fail* of *P* the array of *m* numbers that stores the (index of) the next state for each failure

• How do we construct it?

Definition. The **failure link array** *fail* of *P* the array of *m* numbers that stores the (index of) the next state for each failure

- How do we construct it?
- Again *x* is length of largest prefix that matches a suffix of *P*[1, *q*]

Example. P[0..6) = ababaca

q	0	1	2	3	4	5	6
P[q]	а	b	а	b	а	с	а
fail[q]							

- 1: **procedure** FAILURELINK(*P*[0, *m*))
- 2: $fail[0] \leftarrow 0$
- 3: $x \leftarrow 0$ 4: **for** j = 1, 2, ..., m - 1 **do**
- 5: $fail[j] \leftarrow x$
- 6: while $P[x] \neq P[j]$ do 7: if x = 0 then
 - $x \leftarrow -1$
- 9:
 break

 10:
 else

 11:
 x ← fail[x]
- 12:
 end if

 13:
 end while
- 14: $x \leftarrow x+1$
- 15: **end for**

8:

16: end procedure

Question. What is the running time of FAILURELINK on input of size *m*?

2: $fail[0] \leftarrow 0$ 3: $x \leftarrow 0$ 4: **for** j = 1, 2, ..., m - 1 **do** 5: $fail[j] \leftarrow x$ while $P[x] \neq P[j]$ do 6: 7: if x = 0 then 8: $x \leftarrow -1$ break 9: 10: else 11: $x \leftarrow fail[x]$ end if 12: 13: end while 14: $x \leftarrow x+1$ 15: end for 16: end procedure

1: **procedure** FAILURELINK(*P*[0, *m*))

Question. What is the running time of FAILURELINK on input of size *m*?

Observations.

- *x* incremented once per *j*
- fail[x] < x
- Each "while" iteration decrements *x*

So at most 2m updates to x

- cf. amortized analysis
- x = bank balance

- 1: **procedure** FAILURELINK(*P*[0, *m*))
- 2: $fail[0] \leftarrow 0$
- 3: $x \leftarrow 0$ 4: **for** j = 1, 2, ..., m - 1 **do**
- 5: $fail[j] \leftarrow x$ 6: while $P[x] \neq P[j]$ do 7: if x = 0 then
- 7. $\mathbf{n} x = 0$ then8: $x \leftarrow -1$ 9:break
- 10:else11: $x \leftarrow fail[x]$ 12:end if
- 13: end while 14: $x \leftarrow x + 1$
- 15: **end for**
- 16: end procedure

Question. How do we apply the failure link array to find a match?

Question. How do we apply the failure link array to find a match?

- Scan along *T*[0, *n*)
 - index *i*
- Maintain position in *P*[0, *m*)
 - index j
 - current prefix match
- When T[i] = P[j], increment *i* and *j*
- Otherwise, $j \leftarrow fail[j]$
 - unless j = 0, then $i \leftarrow i + 1$

Question. How do we apply the failure link array to find a match?

- Scan along *T*[0, *n*)
 - index *i*
- Maintain position in *P*[0, *m*)
 - index j
 - current prefix match
- When T[i] = P[j], increment *i* and *j*
- Otherwise, $j \leftarrow fail[j]$
 - unless j = 0, then $i \leftarrow i + 1$
- 1: procedure KMP(T[0..n), P[0..m))2: $fail \leftarrow FAILURELINK(P)$ 3: $i \leftarrow 0$ 4: $i \leftarrow 0$ 5: while $i < n \operatorname{do}$ if T[i] = P[q] then 6: 7: $i \leftarrow i+1, j \leftarrow j+1$ 8: if j = m then return i - j9: else 10: if $j \ge 1$ then 11: $j \leftarrow fail[j]$ 12: else 13: $i \leftarrow i + 1$ 14: end if 15: end if 16: end while
- 17: end procedure

Analysis:

- Running time O(n+m)
 - O(m) to build fail
 - O(n) to apply KMP
 - analysis uses amortized analysis
- Additional space *O*(*m*)
 - just need to store *fail* and indices

- 1: **procedure** KMP(*T*[0..*n*), *P*[0..*m*))
- $fail \leftarrow FAILURELINK(P)$ 2:
- 3: $i \leftarrow 0$ 4: $i \leftarrow 0$
- 5: while $i < n \operatorname{do}$
- if T[i] = P[q] then 6: 7:

$$i \leftarrow i+1, j \leftarrow j+1$$

- 8: if j = m then return i - j9:
 - else
- 10: if $j \ge 1$ then
- 11: $j \leftarrow fail[j]$ 12: else
- 13: $i \leftarrow i + 1$
- 14: end if
- 15: end if
- 16: end while
- 17: end procedure

Analysis:

- Running time O(n+m)
 - O(m) to build fail
 - O(n) to apply KMP
 - analysis uses amortized analysis
- Additional space *O*(*m*)
 - just need to store *fail* and indices

Clean Takeaway:

fail[j] is the length of the longest prefix of P[0..i] that is a suffix of P[1..j]

- 1: procedure KMP(T[0..n), P[0..m))
- $fail \leftarrow FAILURELINK(P)$ 2:
- 3: $i \leftarrow 0$
- 4: $i \leftarrow 0$
- 5: while $i < n \operatorname{do}$
- if T[i] = P[q] then 6: 7:
 - $i \leftarrow i+1, j \leftarrow j+1$
- 8: if j = m then return i - j
- 9: else if $j \ge 1$ then
- 10: 11: $j \leftarrow fail[j]$
- 12: else
- 13: $i \leftarrow i + 1$
- 14: end if
- 15: end if
- 16: end while
- 17: end procedure

DFA vs FLA

Question. Which is better? DFA matching or KMP algorithm?

- KMP has overall running time O(n + m)
 - amortized 2 comparisons per *T* access
- DFA has overall running time $O(n + m|\Sigma|)$
 - 1 comparison per *T* access
 - $|\Sigma|$ dependence

More String Matching!

Scratch Notes