
Lecture 11: String Matching II
COMP526: Efficient Algorithms

Updated: November 7, 2024
Will Rosenbaum
University of Liverpool

1 / 28

289105

Announcements

1. NO QUIZ THIS WEEK!
2. Programming Assignment Posted

• TESTING CODE UPDATED
• small bug in tritonic array generation
• download new version

• Due Wednesday, 13 November

3. Attendance Code:

2 / 28

#

289105

Meeting Goals
Discuss String Matching procedures:
• Brute Force
• DFA procedure
• Knuth-Morris-Pratt

3 / 28

String Matching

The String Matching Problem
Input:

• A text T 2ß§ of length n

• A pattern P 2ß§ of length m (typically m ø n)

Output:
• The index of the first occurrence of P in T , or °1 if T does not

contain P as a substring:
• min{i |T [i, i+m) = P}

Example.

• T = 10110011011101
• P1 = 1101

• Output: i √ 6
• P2 = 000

• Output: i √°1

5 / 28

2 = alphabet

ocusin -

Brute Force
Matching

Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n°m°1

Check if match at i:

• is T [i, i+m) = P?

• verify each character individually

Cost = number of comparisons made

7 / 28

--

Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n°m°1

Check if match at i:

• is T [i, i+m) = P?

• verify each character individually
1: procedure VERIFYMATCH(T ,P, i)
2: j √ 0
3: while j < m do
4: if T [i+ j] 6= P[j] then
5: return FALSE

6: end if
7: j √ j+1
8: end while
9: return TRUE

10: end procedure

Cost = number of comparisons made
7 / 28

T

Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n°m°1

Check if match at i:

• is T [i, i+m) = P?

• verify each character individually
1: procedure VERIFYMATCH(T ,P, i)
2: j √ 0
3: while j < m do
4: if T [i+ j] 6= P[j] then
5: return FALSE

6: end if
7: j √ j+1
8: end while
9: return TRUE

10: end procedure

Cost = number of comparisons made

PollEverywhere Question

What are the worst case and
best case running times of
VERIFYMATCH?

pollev.com/comp526

7 / 28

Parameters
:

n
= siteofite

Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n°m°1

Check if match at i:

• is T [i, i+m) = P?

• verify each character individually
1: procedure VERIFYMATCH(T ,P, i)
2: j √ 0
3: while j < m do
4: if T [i+ j] 6= P[j] then
5: return FALSE

6: end if
7: j √ j+1
8: end while
9: return TRUE

10: end procedure

Cost = number of comparisons made

Best and Worst Cases:

7 / 28

i
1+m->)

④ (m) = Worst

Best Oll)
-> TEiJ FPLO]

Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n°m°1

Check if match at i:

• is T [i, i+m) = P?

• verify each character individually

Cost = number of comparisons made
Brute force. Guess and check every value
i = 0,1, . . . ,n°m°1

• Worst case running time is£(nm)
• What is example has cost≠(nm)?

• Best case cost is£(m)

7 / 28

T= aaaaaa...a

P=ca-

every chari
a

> is comotry P
I

char
in

-
find match at index i = ↳

Brute Force Example
Example

• T = abbbababbab

• P = abba

0

a

1

b

2

b

3

b

4

a

5

b

6

a

7

b

8

b

9

a

10

b

procedure
BRUTEFORCEMATCH(T ,P)

for i = 0,1, . . . ,n°m°1 do
if VERIFYMATCH(T, P, i) then

return i
end if

end for
return °1

end procedure

8 / 28

-

o

a
②
⑨
Ab
⑨

b. ba -
return 6

Brute Force Efficiency
The worst case complexity of brute force search is£(nm). . .

. . . but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.
• Claim: brute force search running time is now O(n)

• In fact, at most 2n comparisons made!
• Why?

• Which of these comparisons were unnecessary?
• How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?

• Goal: never re-read a character from T !

9 / 28

T = aaaaa - -
- a

P = aaa -ab

Brute Force Efficiency
The worst case complexity of brute force search is£(nm). . .

. . . but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

• Claim: brute force search running time is now O(n)
• In fact, at most 2n comparisons made!
• Why?

• Which of these comparisons were unnecessary?
• How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?

• Goal: never re-read a character from T !

9 / 28

P = P , P2 : Dm #

never do 2n-acomparisons

Brute Force Efficiency
The worst case complexity of brute force search is£(nm). . .

. . . but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.
• Claim: brute force search running time is now O(n)

• In fact, at most 2n comparisons made!
• Why?

• Which of these comparisons were unnecessary?
• How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?

• Goal: never re-read a character from T !

9 / 28

Brute Force Efficiency
The worst case complexity of brute force search is£(nm). . .

. . . but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.
• Claim: brute force search running time is now O(n)

• In fact, at most 2n comparisons made!
• Why?

• Which of these comparisons were unnecessary?
• How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?

• Goal: never re-read a character from T !

9 / 28

Brute Force Efficiency
The worst case complexity of brute force search is£(nm). . .

. . . but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.
• Claim: brute force search running time is now O(n)

• In fact, at most 2n comparisons made!
• Why?

• Which of these comparisons were unnecessary?
• How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?

• Goal: never re-read a character from T !

9 / 28

Matching with a
DFA

Sliding Comparisons
Example

• T = aabababbabacaa
• P = ababaca

a a b a b a b b a b a b a c a a

a b a b a c a

a b a b a c a

a b a b a c a

a b a b a c a

Idea:
• Scan through T keeping track of current matches
• Each new character T read, compare it to next character of P

• If mismatch slide P so that longest prefix of P matches
11 / 28

-

Sliding Comparisons
Example

• T = aabababbabacaa
• P = ababaca

a a b a b a b b a b a b a c a a

a b a b a c a

a b a b a c a

a b a b a c a

a b a b a c a

Idea:
• Scan through T keeping track of current matches
• Each new character T read, compare it to next character of P

• If mismatch slide P so that longest prefix of P matches
11 / 28

T

P =

Sliding Comparisons
Example

• T = aabababbabacaa
• P = ababaca

a a b a b a b b a b a b a c a a

a b a b a c a

a b a b a c a

a b a b a c a

a b a b a c a

Idea:
• Scan through T keeping track of current matches
• Each new character T read, compare it to next character of P

• If mismatch slide P so that longest prefix of P matches
11 / 28

dont 8 Be do these
->
ENb

Sliding Comparisons
Example

• T = aabababbabacaa
• P = ababaca

a a b a b a b b a b a b a c a a

a b a b a c a

a b a b a c a

a b a b a c a

a b a b a c a

Idea:
• Scan through T keeping track of current matches
• Each new character T read, compare it to next character of P

• If mismatch slide P so that longest prefix of P matches
11 / 28

↳dont necomparisees

Sliding Comparisons
Example

• T = aabababbabacaa
• P = ababaca

a a b a b a b b a b a b a c a a

a b a b a c a

a b a b a c a

a b a b a c a

a b a b a c a

Idea:
• Scan through T keeping track of current matches
• Each new character T read, compare it to next character of P

• If mismatch slide P so that longest prefix of P matches
11 / 28

*
suffix before mismatch

F
prefix
of pattern

Representing States and Matches
Question. What information do we need to compute and store to
determine next comparison?

• How many matches in P have we made so far?
• What what is the longest matching prefix for each possible next

character in T

• if we read character x, how far do we need to “slide” P to match a
prefix?

Information to store

• states that represent number of matches with current prefix of P

• transitions from current state to next states, depending on next
character read from T

Note. This information depends only on the pattern P, not the text T .

12 / 28

Representing States and Matches
Question. What information do we need to compute and store to
determine next comparison?

• How many matches in P have we made so far?
• What what is the longest matching prefix for each possible next

character in T

• if we read character x, how far do we need to “slide” P to match a
prefix?

Information to store

• states that represent number of matches with current prefix of P

• transitions from current state to next states, depending on next
character read from T

Note. This information depends only on the pattern P, not the text T .

12 / 28

Representing States and Matches
Question. What information do we need to compute and store to
determine next comparison?

• How many matches in P have we made so far?
• What what is the longest matching prefix for each possible next

character in T

• if we read character x, how far do we need to “slide” P to match a
prefix?

Information to store

• states that represent number of matches with current prefix of P

• transitions from current state to next states, depending on next
character read from T

Note. This information depends only on the pattern P, not the text T .

12 / 28

DFAs
A Deterministic Finite Automaton (DFA) consists of:

• A finite set Q of states
• A finite alphabet ß
• A transition function ± : Q£ß! Q

• An initial state q0 2 Q

• A set F µ Q of accepting states

Interpretation. A DFA is used to determine if a string (text) T has some
property (e.g., containing a pattern P):

• Start at the state q0

• Read characters from T sequentially
• if in state q and read character c, move to state ±(q,æ)

• Return TRUE if end in “accepting” state

13 / 28

rule : if

- in State G
and read
characterC

(int) which
state to

-z more

DFAs
A Deterministic Finite Automaton (DFA) consists of:

• A finite set Q of states
• A finite alphabet ß
• A transition function ± : Q£ß! Q

• An initial state q0 2 Q

• A set F µ Q of accepting states

Interpretation. A DFA is used to determine if a string (text) T has some
property (e.g., containing a pattern P):

• Start at the state q0

• Read characters from T sequentially
• if in state q and read character c, move to state ±(q,æ)

• Return TRUE if end in “accepting” state

13 / 28

transition
-function
-

DFA Example
Example

• T = aabacaababacaa
• P = ababaca

0 1 2 3 4 5 6 7

b,c

a b a b a c a

c b,c c b,c b,c

a

b
b

a

ß

text a a b a c a a b a b a c a a

state

14 / 28

↓
E

⑧ 8- 0 -

- ↑
Acupt
state

match
d -

E
1 1 2 30412345677

DFA Efficiency
PollEverywhere Question

Given a DFA for matching
P[0,m) in T [0,n), what is the
running time of applying the
DFA? Assume following links is
O(1) time.

1. £(nm)

2. £(n logm)

3. £(n+m)

4. £(n)

pollev.com/comp526

15 / 28

-

DFA Efficiency
Observe: If we are given a DFA,
executing it

• reads each character of T once

• updates state once per
character

=) running time O(n)

So the overall running time for
pattern matching with a DFA is
O(n)+ time to build DFA

• assuming computation of ± is
O(1).

PollEverywhere Question

Given a DFA for matching
P[0,m) in T [0,n), what is the
running time of applying the
DFA? Assume following links is
O(1) time.

1. £(nm)

2. £(n logm)

3. £(n+m)

4. £(n)

pollev.com/comp526

15 / 28

-

E

DFA Efficiency
Observe: If we are given a DFA,
executing it

• reads each character of T once

• updates state once per
character

=) running time O(n)

So the overall running time for
pattern matching with a DFA is
O(n)+ time to build DFA

• assuming computation of ± is
O(1).

But how do we build the DFA?

PollEverywhere Question

Given a DFA for matching
P[0,m) in T [0,n), what is the
running time of applying the
DFA? Assume following links is
O(1) time.

1. £(nm)

2. £(n logm)

3. £(n+m)

4. £(n)

pollev.com/comp526

15 / 28

=???

DFA Interpretation & Construction
Semantic Question. What does it mean to be in state q?

• Current position in T matches P up to the first q characters

• Symbolically T [j°q+1, j] = P[0,q)

Question. What happens when we read T [j+1]?

• If T [j+1] = P[q], transition to state q+1

• If T [j+1] 6= P[q], find the length q
0 ∑ q of the longest prefix of P

that matches T [j°q
0, j+1] that matches P[0,q

0)

16 / 28

In state of after reading
T[i]

E)

Khars in T from i-c+

all matches

DFA Interpretation & Construction
Semantic Question. What does it mean to be in state q?

• Current position in T matches P up to the first q characters

• Symbolically T [j°q+1, j] = P[0,q)

Question. What happens when we read T [j+1]?

• If T [j+1] = P[q], transition to state q+1

• If T [j+1] 6= P[q], find the length q
0 ∑ q of the longest prefix of P

that matches T [j°q
0, j+1] that matches P[0,q

0)

16 / 28

DFA Interpretation & Construction
Semantic Question. What does it mean to be in state q?

• Current position in T matches P up to the first q characters

• Symbolically T [j°q+1, j] = P[0,q)

Question. What happens when we read T [j+1]?

• If T [j+1] = P[q], transition to state q+1

• If T [j+1] 6= P[q], find the length q
0 ∑ q of the longest prefix of P

that matches T [j°q
0, j+1] that matches P[0,q

0)

a a b a b a b b a b a b a c a a

q = 5 a b a b a c a

q
0 = 4 a b a b a c a

16 / 28

·

DFA Interpretation & Construction
Semantic Question. What does it mean to be in state q?

• Current position in T matches P up to the first q characters

• Symbolically T [j°q+1, j] = P[0,q)

Question. What happens when we read T [j+1]?

• If T [j+1] = P[q], transition to state q+1

• If T [j+1] 6= P[q], find the length q
0 ∑ q of the longest prefix of P

that matches T [j°q
0, j+1] that matches P[0,q

0)

a a b a b a b b a b a b a c a a

q = 5 a b a b a c a

q
0 = 4 a b a b a c a

• Insight: if T [j+1] = c this is the same as matching P[0..q] against
P[1..q)c

• we can use the DFA constructed so far to find this!

16 / 28

--
G
-

DFA Interpretation & Construction
• Insight: if T [j+1] = c this is the same as matching P[0..q] against

P[1..q)c

• we can use the DFA constructed so far to find this!

Inductive Construction.
• Start with states 0 and 1 with

±(0,c) =
(

1 if P[0] = c

0 otherwise.

• Once we’ve constructed DFA up to state q:
• take ±(q,P[q]) = q+1
• for c 6= P[q], find ±(q,c) by applying DFA to P[1,q)c

16 / 28

*
/Ptol-

DFA Interpretation & Construction
• Insight: if T [j+1] = c this is the same as matching P[0..q] against

P[1..q)c

• we can use the DFA constructed so far to find this!
• Once we’ve constructed DFA up to state q:

• take ±(q,P[q]) = q+1
• for c 6= P[q], find ±(q,c) by applying DFA to P[1,q)c

Example. Compute ±(5,a) for P = ababaca.

0 1 2 3 4 5 6 7

b,c

a b a b a c a

c b,c c b,c b,c

a

b
b

ß

16 / 28

#ing!

t
- =xig

-a ·a
80-0-0 O

already constructed

DFA Interpretation & Construction
• Insight: if T [j+1] = c this is the same as matching P[0..q] against

P[1..q)c

• we can use the DFA constructed so far to find this!

Inductive Construction.
• Start with states 0 and 1 with

±(0,c) =
(

1 if P[0] = c

0 otherwise.

• Once we’ve constructed DFA up to state q:
• take ±(q,P[q]) = q+1
• for c 6= P[q], find ±(q,c) by applying DFA to P[1,q)c

Analysis (idea).

• Argue by induction on q that the DFA enters state q on reading
T [j] if and only if q is the largest number such that
T [j°q+1, j] = P[0,q).

16 / 28

-

DFA Lookup Table Construction
DFA diagrams are great for humans, but not so great for computers. . .

17 / 28

DFA Lookup Table Construction
DFA diagrams are great for humans, but not so great for computers. . .

Problems.

1. How do we represent the DFA
in a computer friendly format?

2. How do construct the DFA in
that format efficiently?

17 / 28

DFA Lookup Table Construction
Problems.

1. How do we represent the DFA
in a computer friendly format?

2. How do construct the DFA in
that format efficiently?

Solutions.
1. Store a lookup table ±[][]

• columns = states, rows =
characters

• ±[q][c] √ ±(q,c)

2. Compute column by column
• trick: keep track of state for

P[1,q) because we’ll reuse
this for each P[1,q)c

• x is largest value with
P[0,x) = P[q°x,q]

17 / 28

cols = states

·
G(2 , c)

instate
=> next state .

DFA Lookup Table Construction
Problems.

1. How do we represent the DFA
in a computer friendly format?

2. How do construct the DFA in
that format efficiently?

Solutions.
1. Store a lookup table ±[][]

• columns = states, rows =
characters

• ±[q][c] √ ±(q,c)

2. Compute column by column
• trick: keep track of state for

P[1,q) because we’ll reuse
this for each P[1,q)c

• x is largest value with
P[0,x) = P[q°x,q]

17 / 28

-

-

DFA Lookup Table Construction

Solutions.
1. Store a lookup table ±[][]

• columns = states, rows =
characters

• ±[q][c] √ ±(q,c)

2. Compute column by column
• trick: keep track of state for

P[1,q) because we’ll reuse
this for each P[1,q)c

• x is largest value with
P[0,x) = P[q°x,q]

1: procedure CONSTRUCTDFA(P[0..m))
2: for c 2ß do
3: ±[0][c] √ 0
4: end for
5: ±[0][P[0]] √ 1
6: x √ 0
7: for q = 1,2, . . . ,m°1 do
8: for c 2ß do
9: ±[q][c] √ ±[x][c]

10: end for
11: ±[q][P[q]] √ q+1
12: x √ ±[x][P[q]]
13: end for
14: end procedure

17 / 28

J initfirst
I

f

iratee

-
J colum

DFA Lookup Table Construction

Example. P[0..6) = ababaca

±(c,q) 0 1 2 3 4 5 6
P[q] a b a b a c a

a

b

c

1: procedure CONSTRUCTDFA(P[0..m))
2: for c 2ß do
3: ±[0][c] √ 0
4: end for
5: ±[0][P[0]] √ 1
6: x √ 0
7: for q = 1,2, . . . ,m°1 do
8: for c 2ß do
9: ±[q][c] √ ±[x][c]

10: end for
11: ±[q][P[q]] √ q+1
12: x √ ±[x][P[q]]
13: end for
14: end procedure

17 / 28

00

. E* 0 O 1

PYX
to col &

DFA Lookup Table Construction

PollEverywhere Question

What is the running time of
CONSTRUCTDFA when P has
length m and |ß| = s?

pollev.com/comp526

1: procedure CONSTRUCTDFA(P[0..m))
2: for c 2ß do
3: ±[0][c] √ 0
4: end for
5: ±[0][P[0]] √ 1
6: x √ 0
7: for q = 1,2, . . . ,m°1 do
8: for c 2ß do
9: ±[q][c] √ ±[x][c]

10: end for
11: ±[q][P[q]] √ q+1
12: x √ ±[x][P[q]]
13: end for
14: end procedure

17 / 28

Jas)
* all

i
it. -> (ms)

DFA Lookup Table Application
Pitting it Together

• Construct the DFA

• Apply the DFA

• Running time is
£(n+m |ß|)

• £(m |ß|) for making
DFA

• £(n) for applying DFA
• Additional space

overhead: £(m |ß|)
• store the DFA

1: procedure APPLYDFA(T [0..n),±,m)
2: q √ 0
3: for i = 0,1, . . . ,n°1 do
4: q √ ±[q][T [i]]
5: if q = m then
6: return i

7: end if
8: end for
9: return °1

10: end procedure
11: procedure DFAMATCH(P[0..m),T [0..n))
12: ±√ CONSTRUCTDFA(P,T)
13: return APPLYDFA(T ,±,m)
14: end procedure

18 / 28

startat- - /state O

I

DFA Lookup Table Application
Pitting it Together

• Construct the DFA

• Apply the DFA

• Running time is
£(n+m |ß|)

• £(m |ß|) for making
DFA

• £(n) for applying DFA
• Additional space

overhead: £(m |ß|)
• store the DFA

1: procedure APPLYDFA(T [0..n),±,m)
2: q √ 0
3: for i = 0,1, . . . ,n°1 do
4: q √ ±[q][T [i]]
5: if q = m then
6: return i

7: end if
8: end for
9: return °1

10: end procedure
11: procedure DFAMATCH(P[0..m),T [0..n))
12: ±√ CONSTRUCTDFA(P,T)
13: return APPLYDFA(T ,±,m)
14: end procedure

18 / 28

--

↑
could

be a lot of space

Knuth-Morris-
Pratt

Failure Link Automaton
DFA efficiency.

• Space/time to build DFA:£(m |ß|)
• Time to execute DFA:£(n)

=) Overall time is£(n+m |ß|)
• additional space overhead is£(m |ß|)

Question. Can we perform string matching in time O(n) with less space

overhead?

Idea. When comparison fails, don’t have a separate transition for each
failing character

• Just record failure and “shift” pattern as far forward as possible

20 / 28

Failure Link Automaton
DFA efficiency.

• Space/time to build DFA:£(m |ß|)
• Time to execute DFA:£(n)

=) Overall time is£(n+m |ß|)
• additional space overhead is£(m |ß|)

Question. Can we perform string matching in time O(n) with less space

overhead?

Idea. When comparison fails, don’t have a separate transition for each
failing character

• Just record failure and “shift” pattern as far forward as possible

20 / 28

Failure Link Automaton
Example

• T = aabacaababacaa
• P = ababaca

0 1 2 3 4 5 6 7

c,d

a b a b a c a

£ £ £ £

£ £ ß

text a a b a c a a b a b a c a a

states

21 / 28

FLA Execution
A Failure Link Automaton (FLA)
consists of:

• A finite set Q of states
• A finite alphabet ß
• A transition function
' : Q£ (ß[{£}) ! Q

• An initial state q0 2 Q

• A set F µ Q of accepting states

22 / 28

FLA Execution
A Failure Link Automaton (FLA)
consists of:

• A finite set Q of states
• A finite alphabet ß
• A transition function
' : Q£ (ß[{£}) ! Q

• An initial state q0 2 Q

• A set F µ Q of accepting states

Execution. To apply and FLA to T

• Start at the state q0

• Read characters from T

sequentially
• if in state q and read

character c:
• if '(q,c) is defined, move

to state '(q,c)
• otherwise move to state
'(q,£) and re-read c

• Return TRUE if end in
“accepting” state

22 / 28

FLA Execution

PollEverywhere Question

Given an FLA for a pattern P of
length m, how many times could
we follow failure links for a single
character c read from T in the
worst case?

pollev.com/comp526

Execution. To apply and FLA to T

• Start at the state q0

• Read characters from T

sequentially
• if in state q and read

character c:
• if '(q,c) is defined, move

to state '(q,c)
• otherwise move to state
'(q,£) and re-read c

• Return TRUE if end in
“accepting” state

22 / 28

FLA Execution
Execution. To apply and FLA to T

• Start at the state q0

• Read characters from T

sequentially
• if in state q and read

character c:
• if '(q,c) is defined, move

to state '(q,c)
• otherwise move to state
'(q,£) and re-read c

• Return TRUE if end in
“accepting” state

22 / 28

FLA Running Time
More careful analysis

• If we match up to P[j], then we can only follow up to j back links

• In order to witness j failures, must have witnessed j successes!

Amortized cost of each character read from T

• If read character c is a match:
• pay 1 for comparison
• put 1 unit cost in the bank

• If read character c is a mismatch
• withdraw 1 from the bank

• By analysis above account balance is always non-negative

=) amortized cost of each comparison is 2

=) hence overall running time of execution is O(n)

23 / 28

FLA Running Time
More careful analysis

• If we match up to P[j], then we can only follow up to j back links

• In order to witness j failures, must have witnessed j successes!

Amortized cost of each character read from T

• If read character c is a match:
• pay 1 for comparison
• put 1 unit cost in the bank

• If read character c is a mismatch
• withdraw 1 from the bank

• By analysis above account balance is always non-negative

=) amortized cost of each comparison is 2

=) hence overall running time of execution is O(n)

23 / 28

FLA Construction
Observation. Each state q has

• 1 forward link to state q+1

• 1 fail link

Given P, we don’t need to store
forward link label:

• forward link label from
P[q] = P[q+1]

Only need to store fail link state!

• this can be stored as a single
array of size m

=) only O(m) space overhead

24 / 28

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

• How do we construct it?

• Again x is length of largest prefix that
matches a suffix of P[1,q)

24 / 28

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

• How do we construct it?

• Again x is length of largest prefix that
matches a suffix of P[1,q)

Example. P[0..6) = ababaca

q 0 1 2 3 4 5 6
P[q] a b a b a c a

fail[q]

1: procedure FAILURELINK(P[0,m))
2: fail[0] √ 0
3: x √ 0
4: for j = 1,2, . . . ,m°1 do
5: fail[j] √ x

6: while P[x] 6= P[j] do
7: if x = 0 then
8: x √°1
9: break

10: else
11: x √ fail[x]
12: end if
13: end while
14: x √ x+1
15: end for
16: end procedure

24 / 28

FLA Construction

Question. What is the running
time of FAILURELINK on input of
size m?

1: procedure FAILURELINK(P[0,m))
2: fail[0] √ 0
3: x √ 0
4: for j = 1,2, . . . ,m°1 do
5: fail[j] √ x

6: while P[x] 6= P[j] do
7: if x = 0 then
8: x √°1
9: break

10: else
11: x √ fail[x]
12: end if
13: end while
14: x √ x+1
15: end for
16: end procedure

24 / 28

FLA Construction

Question. What is the running
time of FAILURELINK on input of
size m?

Observations.
• x incremented once per j

• fail[x] < x

• Each “while” iteration
decrements x

So at most 2m updates to x

• cf. amortized analysis

• x = bank balance

1: procedure FAILURELINK(P[0,m))
2: fail[0] √ 0
3: x √ 0
4: for j = 1,2, . . . ,m°1 do
5: fail[j] √ x

6: while P[x] 6= P[j] do
7: if x = 0 then
8: x √°1
9: break

10: else
11: x √ fail[x]
12: end if
13: end while
14: x √ x+1
15: end for
16: end procedure

24 / 28

KMP Algorithm
Question. How do we apply the
failure link array to find a match?

25 / 28

KMP Algorithm
Question. How do we apply the
failure link array to find a match?

• Scan along T [0,n)
• index i

• Maintain position in P[0,m)
• index j

• current prefix match

• When T [i] = P[j], increment i

and j

• Otherwise, j √ fail[j]
• unless j = 0, then i √ i+1

25 / 28

KMP Algorithm
Question. How do we apply the
failure link array to find a match?

• Scan along T [0,n)
• index i

• Maintain position in P[0,m)
• index j

• current prefix match

• When T [i] = P[j], increment i

and j

• Otherwise, j √ fail[j]
• unless j = 0, then i √ i+1

1: procedure KMP(T [0..n),P[0..m))
2: fail √ FAILURELINK(P)
3: i √ 0
4: j √ 0
5: while i < n do
6: if T [i] = P[q] then
7: i √ i+1, j √ j+1
8: if j = m then return i° j

9: else
10: if j ∏ 1 then
11: j √ fail[j]
12: else
13: i √ i+1
14: end if
15: end if
16: end while
17: end procedure

25 / 28

KMP Algorithm
Analysis:
• Running time O(n+m)

• O(m) to build fail

• O(n) to apply KMP
• analysis uses amortized

analysis
• Additional space O(m)

• just need to store fail and
indices

1: procedure KMP(T [0..n),P[0..m))
2: fail √ FAILURELINK(P)
3: i √ 0
4: j √ 0
5: while i < n do
6: if T [i] = P[q] then
7: i √ i+1, j √ j+1
8: if j = m then return i° j

9: else
10: if j ∏ 1 then
11: j √ fail[j]
12: else
13: i √ i+1
14: end if
15: end if
16: end while
17: end procedure

25 / 28

KMP Algorithm
Analysis:
• Running time O(n+m)

• O(m) to build fail

• O(n) to apply KMP
• analysis uses amortized

analysis
• Additional space O(m)

• just need to store fail and
indices

Clean Takeaway:
fail[j] is the length of the longest
prefix of P[0..j] that is a suffix of
P[1..j]

1: procedure KMP(T [0..n),P[0..m))
2: fail √ FAILURELINK(P)
3: i √ 0
4: j √ 0
5: while i < n do
6: if T [i] = P[q] then
7: i √ i+1, j √ j+1
8: if j = m then return i° j

9: else
10: if j ∏ 1 then
11: j √ fail[j]
12: else
13: i √ i+1
14: end if
15: end if
16: end while
17: end procedure

25 / 28

DFA vs FLA
Question. Which is better? DFA matching or KMP algorithm?

• KMP has overall running time O(n+m)
• amortized 2 comparisons per T access

• DFA has overall running time O(n+m |ß|)
• 1 comparison per T access
• |ß| dependence

26 / 28

Next Time

More String Matching!

27 / 28

Scratch Notes

28 / 28

