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Announcements
1. NO QUIZ THIS WEEK!

2. Programming Assignment Posted
• Due Wednesday, 13 November

3. Attendance Code:
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Meeting Goals
• Discuss more Divide & Conquer algorithms

• Order Statistics
• Majority
• Closest Pair of Points

• Introduce the String Matching problem
• Problem definition
• Elementary algorithm
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Divide &
Conquer



Previously: Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

1. Break the input into smaller instances of the task

2. Solve the smaller instances
• this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Examples (so far):
• MERGESORT: divide an array by index to sort

• O(n logn) time

• QUICKSORT: divide an array by value to sort
• O(n logn) time

• BINARYSEARCH: divide a sorted array to search it
• O(logn) time
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Three More Problems
Problem 1. k-Selection:

• Given an array a of n numbers, find the kth largest number

Problem 2. Majority:

• Given an array a of n items, is there an item that is repeated more
than > n/2 times?

Problem 3. Closest Points in the Plane

• Given n points p1,p2, . . . ,pn in the plane, which pair of points
pi,pj are closest to one another?
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k-Selection



k-Selection
Problem. Given an array a of n numbers, find the kth smallest number.

1: procedure
QUICKSELECT(a,min,max,k)

2: if max−min ≤ 1 then
3: return a[min]
4: end if
5: p ← SELECTPIVOT(a,min,max)
6: j ← SPLIT(a,min,max,p)
7: if j = k then
8: return a[k]
9: else if j < k then

10: QUICKSELECT(a, j+1,max,k)
11: else
12: QUICKSELECT(a,min, j−1,k)
13: end if
14: end procedure
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k-Selection
Problem. Given an array a of n numbers, find the kth smallest number.
Simple solution.

• sort a in O(n logn) time

• return a[k]
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• sort a in O(n logn) time

• return a[k]

Can we do better?
Modify QuickSort!

• Choose pivot p

• Perform split
• only recurse on half that

contains kth smallest value

• this will be the half that
contains index k

• Random pivot selection
=⇒ O(n) expected time!
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k-Selection
Problem. Given an array a of n numbers, find the kth smallest number.

PollEverywhere Question

What is the worst case running
time of QUICKSELECT on an
array of n elements?

pollev.com/comp526

1: procedure
QUICKSELECT(a,min,max,k)

2: if max−min ≤ 1 then
3: return a[min]
4: end if
5: p ← SELECTPIVOT(a,min,max)
6: j ← SPLIT(a,min,max,p)
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Deterministic k-Selection?
Question. Can we perform k-selection with a worst case O(n) running
time?

Idea. What if we can select better pivots?
• Suppose we can guarantee that our pivot is “good enough:”

• rank of p is between cn and (1− c)n for c > 0

• How many recursive calls until we’re done?
• each recursive call has size at most (1−2c)n
• ℓ recursive calls =⇒ size at most (1−2c)ℓn
• =⇒ done after ℓ= O(logn) levels of recursion

• What is overall running time?
• Cn+ (1−2c)Cn+ (1−2c)2Cn+·· · = O(n)

But how can we find a good pivot deterministically?

• Need to find pivots close to the median. . .

• Median is (special case) of k selection!
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Median of Medians Strategy
Strategy. To find a good pivot:

• Find a smaller set of values
whose median is a good pivot

• Recursively find the median of
the smaller set of values
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Strategy. To find a good pivot:

• Find a smaller set of values
whose median is a good pivot

• Recursively find the median of
the smaller set of values

• Consider blocks of size 5

• sort each block
• find the block median

• Claim: median of medians is a

good pivot:

• at least 3
10 -fraction is

excluded

1: procedure SELECTPIVOT(a,ℓ,r)
2: m ← n/5
3: for i = 0,1, . . . ,m−1 do
4: SORT(a[5i . . .5i+4])
5: SWAP(a, i,5i+2)
6: end for
7: return QUICKSELECT(a,0,m, (m−1)/2)
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Median of Medians Strategy
Illustration:

1: procedure SELECTPIVOT(a,ℓ,r)
2: m ← n/5
3: for i = 0,1, . . . ,m−1 do
4: SORT(a[5i . . .5i+4])
5: SWAP(a, i,5i+2)
6: end for
7: return QUICKSELECT(a,0,m, (m−1)/2)
8: end procedure
9: procedure QUICKSELECT(a,ℓ,r,k)

10: if r−ℓ≤ 1 return a[l]
11: b ← SELECTPIVOT(a,ℓ,r)
12: j ← SPLIT(a,ℓ,r,a[b])
13: if j = k then
14: return a[j]
15: else if j < k then
16: QUICKSELECTa, j+1,r,k− j−1
17: else
18: QUICKSELECT(a,0, j,k)
19: end if
20: end procedure
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Median of Medians Strategy
Analysis.
Running time T(n) satisfies

T(n) ≤ Cn+T
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Therefore, T(n) = O(n).
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Median of Medians Strategy
Conclusion. The Median of
Medians strategy allows us to

• solve k-selection in O(n)
time, worst case

• sort in O(n logn) time,
worst case too

• use k selection as a
sub-routine for
SELECTPIVOT in
QUICKSORT

Note. Randomized variants
tend to be more efficient in
practice.
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Majority
Problem 2. Majority:

• Given an array a of n items, is there an item that is repeated more
than n/2 times?

Naive Solution

• Iterate over elements and compare each element to all others to
see if occurs at least n/2 times

• TakesΘ(n2) time

Observation. If a value m is a majority, then m must either be a
majority in a[0 . . .n/2] or a[n/2+1. . .n−1] as well.

• Split a in half

• Recursively find candidate majority mℓ and mr for halves

• Check to see if either is a majority
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Divide & Conquer Majority Illustration
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Divide & Conquer Majority in Code
1: procedure ISMAJORITY(a,ℓ,r,v)
2: count ← 0
3: for i = ℓ,ℓ+1, . . . ,r do
4: if a[i] = v then
5: count ← count+1
6: end if
7: end for
8: return count > (r−ℓ+1)/2
9: end procedure

10: procedure MAJORITY(a,ℓ,r)
11: if ℓ− r < 1 return a[ℓ]
12: j ← (r−ℓ)/2
13: vℓ← MAJORITY(a,ℓ, j)
14: vr ← MAJORITY(a, j+1,r)
15: if ISMAJORITY(a,ℓ,r,vℓ) then
16: return vℓ
17: else if ISMAJORITY(a,ℓ,r,vr ) then
18: return vr
19: end if
20: return ⊥
21: end procedure
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Divide & Conquer Majority in Code

PollEverywhere Question

What is the worst case running
time of MAJORITY on an array of n
elements?

pollev.com/comp526
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Divide & Conquer Majority in Code

Analysis.

• Almost identical to
MERGESORT

• Each call to
ISMAJORITY(a,ℓ,r,v) takes
timeΘ(ℓ− r)

• Running time T(n) satisfies
T(n) ≤ 2T(n/2)+Θ(n)

• Solve recursion =⇒ done!
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3: for i = ℓ,ℓ+1, . . . ,r do
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Analysis.

• Almost identical to
MERGESORT

• Each call to
ISMAJORITY(a,ℓ,r,v) takes
timeΘ(ℓ− r)

• Running time T(n) satisfies
T(n) ≤ 2T(n/2)+Θ(n)

• Solve recursion =⇒ done!

Challenge. Devise an algorithm
that finds the majority inΘ(n) time
(worst case). (Hint: don’t use
Divide & Conquer)

1: procedure ISMAJORITY(a,ℓ,r,v)
2: count ← 0
3: for i = ℓ,ℓ+1, . . . ,r do
4: if a[i] = v then
5: count ← count+1
6: end if
7: end for
8: return count > (r−ℓ+1)/2
9: end procedure

10: procedure MAJORITY(a,ℓ,r)
11: if ℓ− r < 1 return a[ℓ]
12: j ← (r−ℓ)/2
13: vℓ← MAJORITY(a,ℓ, j)
14: vr ← MAJORITY(a, j+1,r)
15: if ISMAJORITY(a,ℓ,r,vℓ) then
16: return vℓ
17: else if ISMAJORITY(a,ℓ,r,vr ) then
18: return vr
19: end if
20: return ⊥
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Closest Points in
the Plane



Closest Points in the Plane
Problem 3. Given n points p1,p2, . . . ,pn in the plane, which pair of
points pi,pj are closest to one another?
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Closest Points in the Plane
Problem 3. Given n points p1,p2, . . . ,pn in the plane, which pair of
points pi,pj are closest to one another?
Naive Strategy suggested by
GenAI:

• Compute distances between
all pairs of points

• This takesΘ(n2) time for n
points

1: procedure NAIVEMINDIST(p)
2: d ←∞
3: for i = 1,2, . . . ,n−1 do
4: for j = 0,1, . . . , i−1 do
5: if DIST(p[i],p[j]) < d then
6: d ← DIST(p[i],p[j])
7: end if
8: end for
9: end for

10: return d
11: end procedure
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Problem 3. Given n points p1,p2, . . . ,pn in the plane, which pair of
points pi,pj are closest to one another?

PollEverywhere Question

What is the worst case running
time of NAIVEMINDIST on a set of
n points in the plane?

pollev.com/comp526
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Closest Points in the Plane
Problem 3. Given n points p1,p2, . . . ,pn in the plane, which pair of
points pi,pj are closest to one another?
Naive Strategy suggested by
GenAI:

• Compute distances between
all pairs of points

• This takesΘ(n2) time for n
points

Question. How could we use
Divide & Conquer to improve on
this running time?

1: procedure NAIVEMINDIST(p)
2: d ←∞
3: for i = 1,2, . . . ,n−1 do
4: for j = 0,1, . . . , i−1 do
5: if DIST(p[i],p[j]) < d then
6: d ← DIST(p[i],p[j])
7: end if
8: end for
9: end for

10: return d
11: end procedure

16 / 30



Closest Points: Divide & Conquer
Step 1. split the array according to x-coordinate

17 / 30



Closest Points: Divide & Conquer
Step 1a. sort the array by x coordinate
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Closest Points: Divide & Conquer
Step 1b. find median according to x coordinate, pm
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Closest Points: Divide & Conquer
Step 2a. (recursively) solve the problem for left half
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Closest Points: Divide & Conquer
Step 2b. (recursively) solve the problem for right half

17 / 30



Closest Points: Divide & Conquer
Step 3. merge solutions together
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Closest Points: Divide & Conquer
Step 3. merge solutions together . . . but how?
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Closest Points: Divide & Conquer
Critical Analysis. What happens in the middle strip?
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Analysis of the Middle Strip
Suppose:

• dℓ is minimal distance on the left

• dr is minimal distance on the right

• δ= min
{
dℓ,dr

}
• xm is the median x-coordinate among points

Claim 1. If p is in left half and q is on right
have with DIST(pi,pj) < δ, then
xm −δ< xi ≤ xm and xm ≤ xj ≤ xm +δ.

Claim 2. With p as above, there are at
most 8 points q on the right side with
DIST(p,q) ≤ δ.

Consequence. We only need to make O(n)
further distance computations to
compute overall minimum distance.

18 / 30



Analysis of the Middle Strip
Suppose:

• dℓ is minimal distance on the left

• dr is minimal distance on the right

• δ= min
{
dℓ,dr

}
• xm is the median x-coordinate among points

Claim 1. If p is in left half and q is on right
have with DIST(pi,pj) < δ, then
xm −δ< xi ≤ xm and xm ≤ xj ≤ xm +δ.

Claim 2. With p as above, there are at
most 8 points q on the right side with
DIST(p,q) ≤ δ.

Consequence. We only need to make O(n)
further distance computations to
compute overall minimum distance.

18 / 30



Analysis of the Middle Strip
Suppose:

• dℓ is minimal distance on the left

• dr is minimal distance on the right

• δ= min
{
dℓ,dr

}
• xm is the median x-coordinate among points

Claim 1. If p is in left half and q is on right
have with DIST(pi,pj) < δ, then
xm −δ< xi ≤ xm and xm ≤ xj ≤ xm +δ.

Claim 2. With p as above, there are at
most 8 points q on the right side with
DIST(p,q) ≤ δ.

Consequence. We only need to make O(n)
further distance computations to
compute overall minimum distance.

18 / 30



Analysis of the Middle Strip
Suppose:

• dℓ is minimal distance on the left

• dr is minimal distance on the right

• δ= min
{
dℓ,dr

}
• xm is the median x-coordinate among points

Claim 1. If p is in left half and q is on right
have with DIST(pi,pj) < δ, then
xm −δ< xi ≤ xm and xm ≤ xj ≤ xm +δ.

Claim 2. With p as above, there are at
most 8 points q on the right side with
DIST(p,q) ≤ δ.

Consequence. We only need to make O(n)
further distance computations to
compute overall minimum distance.

18 / 30



Putting it Together
Algorithm Sketch. Find the closest pair of points among p1,p2, . . . ,pn

in the plane:

1. Sort points by x-coordinate, xm is the median value.

2. Recursively sort left and right halves.

3. Set δ to be the minimum distance on either half.
4. Consider points within distance δ of median line, and compute

distances across the halves.
• this can be done in O(n) time

5. Report the smallest distance found.

Running time analysis.
• Preprocessing takes O(n logn) to sort the points.
• The main algorithm running time satisfies the recursion

T(n) ≤ 2T(n/2)+O(n)

=⇒ overall running time is O(n logn).
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in the plane:

1. Sort points by x-coordinate, xm is the median value.

2. Recursively sort left and right halves.

3. Set δ to be the minimum distance on either half.
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• this can be done in O(n) time
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Concluding Thoughts
Divide & Conquer is a powerful algorithm design strategy.
Efficiency improvement over naive solutions:

• SortingΘ(n2) −→Θ(n logn)

• k-SelectionΘ(n2) −→Θ(n)

• MajorityΘ(n2) −→Θ(n logn)

• Closest points in the planeΘ(n2) −→Θ(n logn)

Other applications:

• Matrix multiplication (Strassen’s algorithm):
Θ(n3) −→Θ(nlog2 7+o(1)) ≈Θ(n2.807)

• Integer multiplication: Θ(B2) −→Θ(Blog2 3) −→Θ(B logB)

• Fast Fourier Transform: Θ(n2) −→Θ(n logn)

Other considerations:

• Practical because of parallelism
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String Matching



String Matching: Motivation
Fundamental Problems. Given a (large) text T and (small) pattern P:

• Determine if T contains the pattern P.

• Find the first occurrence of P in T (if any)

• Fund the number of occurrences of P in T

Example applications.

• Search on your computer: Ctrl + F
• Bioinformatics:

• does a DNA sequence (T) contain a particular gene (P)?

• Computer virus detection
• does your hard drive store a known program?

• (Counter) Espionage
• does a data transmission contain the phrase “ATTACK AT DAWN?”

Interesting parameters. |T | is large (∼ 1B), |P| is relatively small (∼ 1K)
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Making Things Precise
Notation

• Σ is a finite alphabet or set of characters, σ= |Σ|
• Σ= {0,1} is binary alphabet
• Σ= {A,B, . . .} is Roman alphabet
• Σ= ·· · e.g., ASCII, Unicode,

• Σn =Σ×Σ×·· ·×Σ= {(c1,c2, . . . ,cn) |each ci ∈Σ} = strings of exactly
n characters

• Σ∗ =⋃∞
n=0Σ

n = all finite strings

• Σ+ =⋃∞
n=0Σ

n = all nonempty (finite) strings

• ε ∈Σ0 is the empty string
• for S ∈Σn, S[i] is ith character of S

• for S,T ∈Σ∗, ST is the concatenation of S and T
• for S ∈Σn, S[i..j] = S[i]S[i+1] · · ·S[j] is a substring

• S[0..j] is a prefix, S[j..n−1] is a suffix
• S[i..j) = S[i..j−1] =⇒ S = S[0..n)
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The String Matching Problem
Input:

• A text T ∈Σ∗ of length n

• A pattern P ∈Σ∗ of length m (typically m ≪ n)

Output:
• The index of the first occurrence of P in T , or −1 if T does not

contain P as a substring:
• min{i |T [i, i+m) = P}

Example.

• T = 10110011011101
• P1 = 1101

• Output: i ← 6

• P2 = 000

• Output: i ←−1
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Brute Force
Matching



Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n−m−1

Check if match at i:

• is T [i, i+m) = P?

• verify each character individually

Cost = number of comparisons made
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Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n−m−1

Check if match at i:

• is T [i, i+m) = P?

• verify each character individually
1: procedure VERIFYMATCH(T ,P, i)
2: j ← 0
3: while j < m do
4: if T [i+ j] ̸= P[j] then
5: return FALSE

6: end if
7: j ← j+1
8: end while
9: return TRUE

10: end procedure

Cost = number of comparisons made

PollEverywhere Question

What are the worst case and
best case running times of
VERIFYMATCH?

pollev.com/comp526
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Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n−m−1

Check if match at i:
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Best and Worst Cases:
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Brute Force Matching
Guess an index i where a match might occur

• Possible guesses i = 0,1, . . . ,n−m−1

Check if match at i:

• is T [i, i+m) = P?

• verify each character individually

Cost = number of comparisons made
Brute force. Guess and check every value
i = 0,1, . . . ,n−m−1

• Worst case running time isΘ(nm)
• What is example has costΩ(nm)?

• Best case cost isΘ(m)
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Brute Force Example
Example

• T = abbbababbab

• P = abba

0

a

1

b

2

b

3

b

4

a

5

b

6

a

7

b

8

b

9

a

10

b

procedure
BRUTEFORCEMATCH(T ,P)

for i = 0,1, . . . ,n−m−1 do
if VERIFYMATCH(T, P, i) then

return i
end if

end for
return −1

end procedure
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Brute Force Efficiency
The worst case complexity of brute force search isΘ(nm). . .

. . . but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.
• Claim: brute force search running time is now O(n)

• In fact, at most 2n comparisons made!
• Why?

• Which of these comparisons were unnecessary?
• How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?
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For Next Time
Consider How could we improve upon BRUTEFORCEMATCH

• How can we use information about previous matches in order to
avoid doing some future checks?
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Scratch Notes
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