	11	I,	11	I.	I.				I.						I,							•		7	(0		r	1	1			9	•	2									
								Ľ,				I											1	T		0		L	J	1	l		1	•)			I					
0000000	0 0	0 0 0	0 0	0 0	0	0 0	0) ()	0 0	0	0	0.0	0	0	0 0	0	0	0 (0 0	0 0	0 1	0 0	0 0	0	0 0	l il	0 0	0	0 0	0 () ()	0 0	0 1	0 0	0 0	0	0 0	0	0 0		0		0 0	
1 2 3 4 5 6 3	в з 11	1	13 14	15 16	1 1	19 20	1	2 23 :	4 25	1 1	1	9 20 1 1	31 32 1	33	1	1	37 38 1 1	39.4	0 41 1 1	42 4: 1 1	1	5 46 1 1	1 1	8 49 1	50 5 1 1	1 52	53 54 1 1	1 1	^{56 57}	1	9 60 1	61 62 1 1	1	4 65 1 1	66 6 ⁻	1 1	69 7/ 1 1	1	12 1	3 74 1	15 75	1	18 7	9 60 1 1
2 2 🛛 2 2 2 2	2 2	2 2 2	2 2 2	2 2	2	2 2	2	2 2	2 2	2	2	2 2	22	2	2 2		2 2	2	2 2	2 2	2	22	2 2	2 2	2 2	2	2 2	2	22	2	2 2	2 2	2	2 2	2 2	2	2 2	2	2 2	2 2	2 2	2	2 2	2 2
333333	33	333	33	33	3	3	3	33	33	3	3	33	33	3	33	3	3	3	33	33	3	33	3 3	3	33	3	33	3	33	3 :	33	33	3	33	3 3	3	33	3	3 3	3	33	3	3	3
444444	44	444	4 4	4 4	4 4	4 4	4	4 4	44	4 4	4	44	44	4	44	4	4	4	44	4 4	4	44	4 4	4	4 4	4	44	4	44	4 4	4	44	4	44	4 4	4	44	4	44		44	4	4	14
555555	i 5 5	5 5 5	5	5	55	5 5		55	5	55	5	5	5	5	5	5	55	5	5	5 5	5	55	5 5	i 5	5 5	i 5	55	5	55	5 !	i 5	55	5 !	55	5 5	5	5 5	5	5 5	5	55	5	5 5	5 5
6666666	6	6 6	66	6 6	66	66	6	6,6	66	66	6	66	66	6	66	6	66	6	66	6 6	6	66	68	6 6	6 6	6	66	6	66	6 1	6 6	5.6	6	66	6 8	6	6 6	5	66	6	66	5	6 6	5 6
77777	11	173		77	7 7	7	7			77	7	11	7 7	7	7 7	7	7 7	I.	11	77	7	7 7	7 1	17		17	7 7	7	7 7		7	17	7	11		7	77		7		7	7		7 7

Lecture 10: Divide & Conquer; String Matching I

COMP526: Efficient Algorithms

Will Rosenbaum University of Liverpool

Updated: November 5, 2024

Announcements

1. NO QUIZ THIS WEEK!

- 2. Programming Assignment Posted
 - Due Wednesday, 13 November
- **3.** Attendance Code:

780493

Meeting Goals

- Discuss more Divide & Conquer algorithms
 - Order Statistics
 - Majority
 - Closest Pair of Points
- Introduce the String Matching problem
 - Problem definition
 - Elementary algorithm

Divide & Conquer

Previously: Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

- 1. Break the input into smaller instances of the task
- 2. Solve the smaller instances
 - this is typically recursive!
- 3. Combine smaller solutions to a solution to the whole task

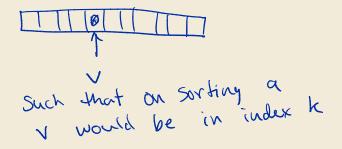
Divide & Conquer Examples (so far):

- MERGESORT: divide an array by index to sort
 - *O*(*n*log *n*) time
- QUICKSORT: divide an array by value to sort
 - *O*(*n*log *n*) time
- BINARYSEARCH: divide a *sorted* array to search it
 - *O*(log *n*) time

Three More Problems

Problem 1. k-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number



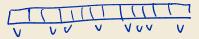
Three More Problems

Problem 1. k-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than > *n*/2 times?



Three More Problems

Problem 1. k-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than > *n*/2 times?

Problem 3. Closest Points in the Plane

• Given *n* points $p_1, p_2, ..., p_n$ in the plane, which *pair* of points p_i, p_j are closest to one another? Pi = (Xi, Yi)

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number.

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- sort a in $Q(n\log n)$ time
- return *a*[*k*]

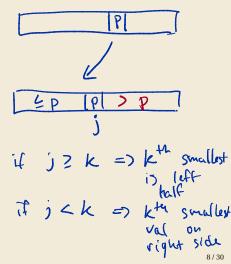
Can we do better?

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- sort *a* in *O*(*n*log *n*) time
- return *a*[*k*]

Can we do better? Modify QuickSort!

- Choose pivot *p*
- Perform split
- only recurse on half that contains kth smallest value
 - this will be the half that contains index *k*
- Random pivot selection $\implies O(n)$ expected time!



Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- sort *a* in *O*(*n*log *n*) time
- return *a*[*k*]

Can we do better? Modify QuickSort!

- Choose pivot *p*
- Perform split
- only recurse on half that contains kth smallest value
 - this will be the half that contains index *k*
- Random pivot selection O(n) = O(n) expected time!

1:	procedure
	QUICKSELECT(<i>a</i> , min, max, <i>k</i>)
2:	if $\max - \min \le 1$ then
3:	return <i>a</i> [min]
4:	end if
5:	$p \leftarrow \text{SELECTPIVOT}(a, \min, \max)$
6:	$j \leftarrow \text{SPLIT}(a, \min, \max, p)$
7:	if $j = k$ then
8:	return <i>a</i> [<i>k</i>]
9:	else if $j < k$ then
10:	QUICKSELECT $(a, j + 1, \max, k)$
11:	else
12:	QUICKSELECT(a , min, $j - 1, k$)
13:	end if
14.	and procedure

14: end procedure

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number.

PollEverywhere Question

What is the *worst case* running time of QUICKSELECT on an array of *n* elements?

K=1 pollev.com/comp526 R = first pivot = largest Val KITITIIIR -> recurse

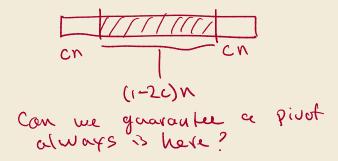
	1:	procedure
		QUICKSELECT(<i>a</i> , min, max, <i>k</i>)
	2:	if $\max - \min \le 1$ then
	3:	return <i>a</i> [min]
	4:	end if
	5:	$p \leftarrow \text{SELECTPIVOT}(a, \min, \max)$
	6:	$j \leftarrow \text{SPLIT}(a, \min, \max, p)$
	7:	if $j = k$ then
	8:	return <i>a</i> [<i>k</i>]
	9:	else if $j < k$ then
	10:	QUICKSELECT($a, j + 1, \max, k$)
	11:	else
	12:	QUICKSELECT(a , min, $j - 1$, k)
	13:	end if
	14:	end procedure
	an	first n-1 elts steps.
-		8/3

Question. Can we perform *k*-selection with a **worst case** *O*(*n*) running time?

Question. Can we perform *k*-selection with a **worst case** *O*(*n*) running time?

Idea. What if we can select better pivots?

- Suppose we can guarantee that our pivot is "good enough:"
 - rank of *p* is between *cn* and (1 c)n for c > 0
- How many recursive calls until we're done?



Question. Can we perform *k*-selection with a **worst case** *O*(*n*) running time?

Idea. What if we can select better pivots?

- Suppose we can guarantee that our pivot is "good enough:"
 - rank of *p* is between *cn* and (1 c)n for c > 0
- How many recursive calls until we're done?
 - each recursive call has size at most (1-2c)n
 - ℓ recursive calls \implies size at most $(1-2c)^{\ell}n^{-1}$
 - \implies done after $\ell = O(\log n)$ levels of recursion
- What is overall running time?

Question. Can we perform *k*-selection with a **worst case** *O*(*n*) running time?

Idea. What if we can select better pivots?

- Suppose we can guarantee that our pivot is "good enough:"
 - rank of *p* is between *cn* and (1 c)n for c > 0
- How many recursive calls until we're done?
 - each recursive call has size at most (1 2c)n
 - ℓ recursive calls \implies size at most $(1-2c)^{\ell}n$
 - \implies done after $\ell = O(\log n)$ levels of recursion
- What is overall running time?

$$\frac{(Cn+(1-2c)Cn+(1-2c)^{2}Cn+\dots=D(n))}{Cn} = Cn(1+(1-2c)+(1-2c)^{2}+\dots=D(n)) = Cn(1+(1-2c)+(1-2c)^{2}+\dots=D(n)).$$

30

Question. Can we perform *k*-selection with a **worst case** *O*(*n*) running time?

Idea. What if we can select better pivots?

- Suppose we can guarantee that our pivot is "good enough:"
 - rank of *p* is between *cn* and (1 c)n for c > 0
- How many recursive calls until we're done?
 - each recursive call has size at most (1 2c)n
 - ℓ recursive calls \implies size at most $(1-2c)^{\ell}n$
 - \implies done after $\ell = O(\log n)$ levels of recursion
- What is overall running time?
 - $Cn + (1 2c)Cn + (1 2c)^2Cn + \dots = O(n)$

But how can we find a good pivot *deterministically*?

- Need to find pivots close to the median...
- Median is (special case) of *k* selection!

Strategy. To find a good pivot:

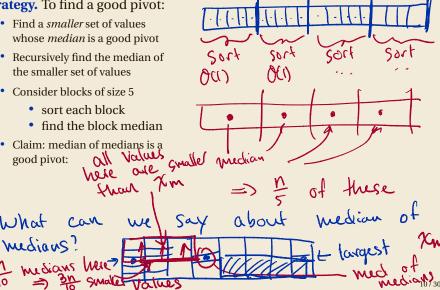
- Find a *smaller* set of values whose *median* is a good pivot
- Recursively find the median of the smaller set of values

Strategy. To find a good pivot:

- Find a smaller set of values whose median is a good pivot
- · Recursively find the median of the smaller set of values
- Consider blocks of size 5

What

- sort each block
- find the block median
- · Claim: median of medians is a good pivot:



Strategy. To find a good pivot:

- Find a *smaller* set of values whose *median* is a good pivot
- Recursively find the median of the smaller set of values
- Consider blocks of size 5
 - sort each block
 - find the block median
- Claim: median of medians is a good pivot:
 - at least $\frac{3}{10}$ -fraction is excluded

Strategy. To find a good pivot:

- Find a *smaller* set of values whose *median* is a good pivot
- Recursively find the median of the smaller set of values
- Consider blocks of size 5
 - sort each block
 - find the block median
- Claim: median of medians is a good pivot:
 - at least $\frac{3}{10}$ -fraction is excluded

- 1: **procedure** SELECTPIVOT(a, ℓ, r)
- 2: $m \leftarrow n/5$
- 3: **for** i = 0, 1, ..., m 1 **do**

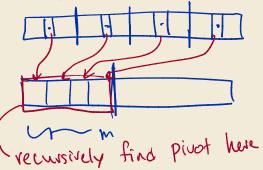
SORT(a[5i...5i+4])

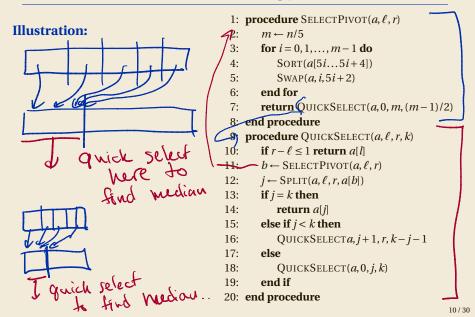
- SWAP(a, i, 5i+2)
- 6: end for

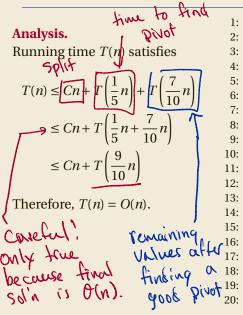
4:

5:

8: end procedure







- 1: **procedure** SELECTPIVOT (a, ℓ, r)
- $m \leftarrow n/5$ 2:

3:

4:

5:

7:

13:

14:

16: 17:

- for i = 0, 1, ..., m 1 do
 - SORT(a[5i...5i+4])
 - SWAP(a, i, 5i+2)
- 6: end for
 - return QUICKSELECT(a, 0, m, (m-1)/2)
- 8: end procedure
- **procedure** QUICKSELECT (a, ℓ, r, k) 9:
- 10: if $r - \ell \leq 1$ return a[l]
- 11: $b \leftarrow \text{SELECTPIVOT}(a, \ell, r)$
- 12: $i \leftarrow \text{SPLIT}(a, \ell, r, a[b])$
 - if i = k then
 - return a[j]
 - else if i < k then

QUICKSELECT a, j+1, r, k-j-1

else

QUICKSELECT(a, 0, j, k)end if

```
end procedure
```

Conclusion. The Median of Medians strategy allows us to

- solve k-selection in O(n)time, worst case
- sort in $O(n \log n)$ time, worst case too
 - use k selection as a sub-routine for SELECTPIVOT in **OUICKSORT**

Note. Randomized variants tend to be more efficient in practice.

- 1: **procedure** SELECTPIVOT (a, ℓ, r)
- 2: $m \leftarrow n/5$
- 3: for i = 0, 1, ..., m - 1 do
 - SORT(a[5i...5i+4])
 - SWAP(a, i, 5i+2)
- 6: end for

4:

5:

- 7: return QUICKSELECT(a, 0, m, (m-1)/2)
- 8: end procedure
- 9: **procedure** QUICKSELECT (a, ℓ, r, k)
- if $r \ell < 1$ return a[l]10:
- $b \leftarrow \text{SELECTPIVOT}(a, \ell, r)$ 11:
- 12: $j \leftarrow \text{SPLIT}(a, \ell, r, a[b])$
- 13: if i = k then 14:
 - return a[j]
- else if i < k then 15:

```
QUICKSELECT a, j+1, r, k-j-1
```

else

16:

17:

18:

QUICKSELECT(a, 0, j, k)

- 19: end if
- 20: end procedure

Majority

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than *n*/2 times?

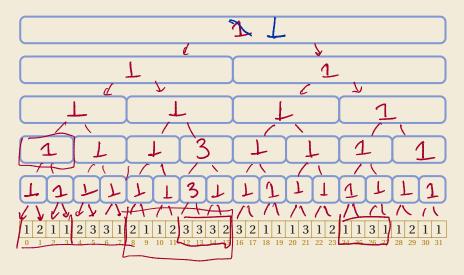
Naive Solution

- Iterate over elements and compare each element to all others to see if occurs at least *n*/2 times
- Takes $\Theta(n^2)$ time

Observation. If a value *m* is a majority, then *m* must either be a majority in a[0...n/2] or a[n/2+1...n-1] as well.

- Split *a* in half
- Recursively find candidate majority m_{ℓ} and m_r for halves
- Check to see if either is a majority

Divide & Conquer Majority Illustration



0.a

1: procedure ISMAJORITY(
$$a, \ell, r, v$$
) ℓ
2: $count \leftarrow 0$ is V
3: for $i = \ell, \ell + 1, ..., r$ do
4: if $a[i] = v$ then
5: $count \leftarrow count + 1$
6: end if
7: end for
8: return $count > (r - \ell + 1)/2$ between
9: end procedure
10: procedure MAJORITY(a, ℓ, r) Two ℓ and
11: if $\ell - r < 1$ return $a[\ell]$
12: $j \leftarrow (r - \ell)/2$
13: $v_{\ell} \leftarrow MAJORITY(a, \ell, r)$ Two ℓ
14: $v_{\ell} \leftarrow MAJORITY(a, \ell, r, v_{\ell})$ then
16: return v_{ℓ}
17: else if ISMAJORITY(a, ℓ, r, v_{τ}) then
18: return v_{τ}
19: end if
20: return \bot
21: end procedure

PollEverywhere Question

What is the *worst case* running time of MAJORITY on an array of *n* elements?

pollev.com/comp526

- 1: **procedure** ISMAJORITY(a, ℓ, r, v)
- 2: $count \leftarrow 0$
- 3: **for** $i = \ell, \ell + 1, ..., r$ **do**
- 4: **if** a[i] = v **then**
- 5: $count \leftarrow count + 1$
- 6: end if
- 7: end for
- 8: **return** *count* > $(r \ell + 1)/2$
- 9: end procedure
- **10: procedure** MAJORITY(*a*, *ℓ*, *r*)
- 11: **if** $\ell r < 1$ **return** $a[\ell]$
- 12: $j \leftarrow (r \ell)/2$
- 13: $v_{\ell} \leftarrow \text{Majority}(a, \ell, j)$
- 14: $v_r \leftarrow \text{MAJORITY}(a, j+1, r)$
- 15: **if** ISMAJORITY(a, ℓ, r, v_{ℓ}) **then**
- 16: return v_ℓ
- 17: **else if** ISMAJORITY(a, ℓ, r, v_r) **then**
- 18: return v_r
- 19: end if
- 20: return \perp
- 21: end procedure

Analysis.

- Almost identical to MERGESORT
- Each call to ISMAJORITY(a, ℓ, r, v) takes time $\Theta(\ell - r)$
- Running time T(n) satisfies $T(n) \le 2T(n/2) + \Theta(n)$
- Solve recursion \implies done!

=> Q(nlog n).

procedure ISMAJORITY(a, ℓ, r, v) 1: 2: $count \leftarrow 0$ 3: for $i = \ell, \ell + 1, ..., r$ do if a[i] = v then 4: 5: $count \leftarrow count + 1$ 6: end if 7: end for 8: **return** count > $(r - \ell + 1)/2$ 9: end procedure **procedure** MAJORITY (a, ℓ, r) 10: T(M2) 11: if $\ell - r < 1$ return $a[\ell]$ T(np) 12: $i \leftarrow (r - \ell)/2$ 13: $v_{\ell} \leftarrow \text{MAJORITY}(a, \ell, j)$ 14: $v_r \leftarrow \text{MAIORITY}(a, j+1, r)$ Q(n) 15: if ISMAJORITY(a, ℓ, r, v_{ℓ}) then 16: return v_{ℓ} 17: else if ISMAJORITY(a, ℓ, r, v_r) then 18: return v_r 19: end if 20: return 🗆 21: end procedure

Analysis.

- Almost identical to MERGESORT
- Each call to ISMAJORITY(a, ℓ, r, v) takes time $\Theta(\ell - r)$
- Running time T(n) satisfies $T(n) \le 2T(n/2) + \Theta(n)$
- Solve recursion \implies done!

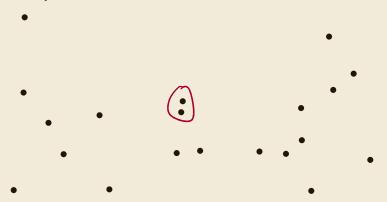
Challenge. Devise an algorithm that finds the majority in $\Theta(n)$ time (worst case). (Hint: don't use Divide & Conquer)

- 1: **procedure** ISMAJORITY(a, ℓ, r, v)
- 2: $count \leftarrow 0$
- 3: **for** $i = \ell, \ell + 1, ..., r$ **do**
- 4: **if** a[i] = v **then**
- 5: $count \leftarrow count + 1$
- 6: end if
- 7: end for
- 8: **return** *count* > $(r \ell + 1)/2$
- 9: end procedure
- 10: **procedure** MAJORITY(a, ℓ, r)
- 11: **if** $\ell r < 1$ **return** $a[\ell]$
- 12: $j \leftarrow (r \ell)/2$
- 13: $v_{\ell} \leftarrow \text{Majority}(a, \ell, j)$
- 14: $v_r \leftarrow \text{MAJORITY}(a, j+1, r)$
- 15: **if** ISMAJORITY(a, ℓ, r, v_{ℓ}) **then**
- 16: return v_ℓ
- 17: **else if** ISMAJORITY(a, ℓ, r, v_r) **then**
- 18: return v_r
- 19: end if
- 20: return \perp
- 21: end procedure

Closest Points in the Plane

Closest Points in the Plane

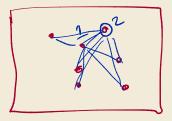
Problem 3. Given *n* points $p_1, p_2, ..., p_n$ in the plane, which *pair* of points p_i, p_j are closest to one another?



Closest Points in the Plane

Problem 3. Given n points $p_1, p_2, ..., p_n$ in the plane, which pair ofpoints p_i, p_j are closest to one another?Naive Strategy suggested byGenAI:1: procedure NAIVEMINDIST(p)

• Compute distances between all pairs of points



2: $d \leftarrow \infty$ 3: for i = 1, 2, ..., n - 1 do 4: for j = 0, 1, ..., i - 1 do 5: if DIST(p[i], p[j]) < d then $d \leftarrow \text{DIST}(p[i], p[j])$ 6: 7: end if end for 8: 9: end for return d 10: 11: end procedure

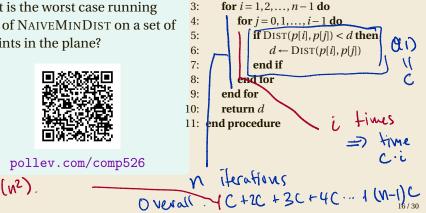
Closest Points in the Plane

Problem 3. Given *n* points p_1, p_2, \ldots, p_n in the plane, which *pair* of Assume: Dist(P, 4) points p_i , p_j are closest to one another?

2:

PollEverywhere Question

What is the worst case running time of NAIVEMINDIST on a set of *n* points in the plane?



1: procedure NAIVEMINDIST(p)

 $d \leftarrow \infty$

= (9(1)

Closest Points in the Plane

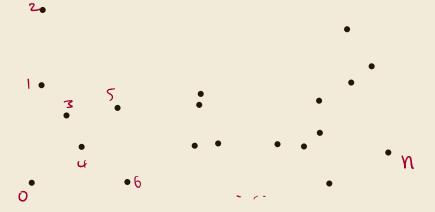
Problem 3. Given n points $p_1, p_2, ..., p_n$ in the plane, which pair ofpoints p_i, p_j are closest to one another?Naive Strategy suggested byGenAI:1: procedure NAIVEMINDIST(p)

• Compute distances between all pairs of points

Question. How could we use **Divide & Conquer** to improve on this running time?

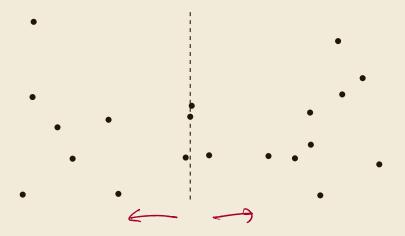
 $d \leftarrow \infty$ 2: 3: for i = 1, 2, ..., n - 1 do 4: for j = 0, 1, ..., i - 1 do if DIST(p[i], p[j]) < d then 5: 6: $d \leftarrow \text{DIST}(p[i], p[j])$ 7: end if end for 8: 9: end for return d 10: 11: end procedure

Step 1. split the array according to *x*-coordinate

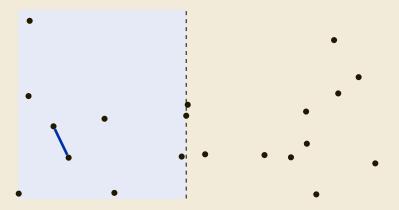


Step 1a. sort the array by *x* coordinate

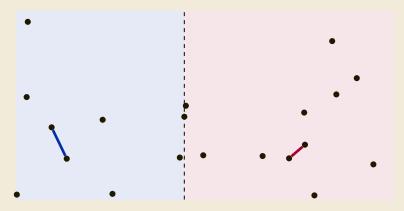
Step 1b. find median according to x coordinate, p_m



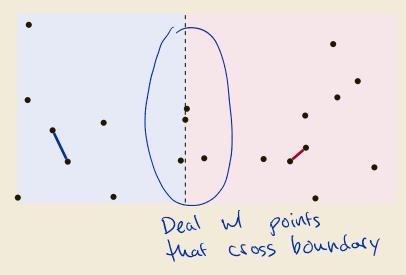
Step 2a. (recursively) solve the problem for left half



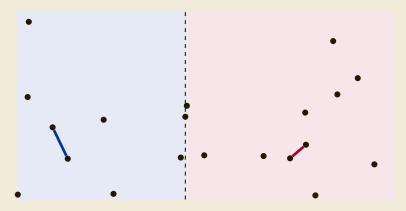
Step 2b. (recursively) solve the problem for right half



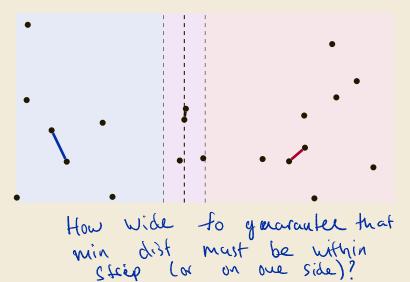
Step 3. merge solutions together



Step 3. merge solutions together ... but how?



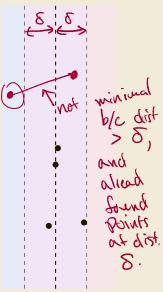
Critical Analysis. What happens in the middle strip?



17/30

Suppose:

- d_ℓ is minimal distance on the left
- d_r is minimal distance on the right
- $\delta = \min\{d_\ell, d_r\}$
- x_m is the median x-coordinate among points



Suppose:

- d_{ℓ} is minimal distance on the left
- d_r is minimal distance on the right
- $\delta = \min\{d_\ell, d_r\}$
- x_m is the median x-coordinate among points

Claim 1. If *p* is in left half and *q* is on right have with $DIST(p_i, p_j) < \delta$, then $x_m - \delta < x_i \le x_m$ and $x_m \le x_j \le x_m + \delta$.

most

intersee

Squares

line

each

Contact

Suppose:

- d_{ℓ} is minimal distance on the left
- *d_r* is minimal distance on the right
- $\delta = \min\{d_\ell, d_r\}$
- x_m is the median x-coordinate among points for Side of center

Claim 1. If *p* is in left half and *q* is on right have with DIST $(p_i, p_j) < \delta$, then $x_m - \delta < x_i \le x_m$ and $x_m \le x_i \le x_m + \delta$.

Claim 2. With *p* as above, there are at most 8 points q on the right side with $DIST(p,q) \leq \delta$. α_{\star}

Suppose:

- d_{ℓ} is minimal distance on the left
- d_r is minimal distance on the right
- $\delta = \min\{d_\ell, d_r\}$
- x_m is the median x-coordinate among points

Claim 1. If *p* is in left half and *q* is on right have with $DIST(p_i, p_j) < \delta$, then $x_m - \delta < x_i \le x_m$ and $x_m \le x_j \le x_m + \delta$.

Claim 2. With *p* as above, there are at most 8 points *q* on the right side with $DIST(p,q) \le \delta$.

Consequence. We only need to make O(n) further distance computations to compute overall minimum distance.

Putting it Together

Algorithm Sketch. Find the closest pair of points among p_1, p_2, \ldots, p_n in the plane:

- 1. Sort points by *x*-coordinate, x_m is the median value. $\leftarrow O(n \log x)$
- 2. Recursively sort left and right halves. $2 T(\mathbb{N}(z))$
- 3. Set δ to be the minimum distance on either half. O(1)
- 4. Consider points within distance δ of median line, and compute $\beta(n)$ distances across the halves.
 - this can be done in *O*(*n*) time
- 5. Report the smallest distance found.

Putting it Together

Algorithm Sketch. Find the closest pair of points among p_1, p_2, \ldots, p_n in the plane:

- 1. Sort points by x-coordinate, x_m is the median value.
- 2. Recursively sort left and right halves.
- 3. Set δ to be the minimum distance on either half.
- 4. Consider points within distance δ of median line, and compute distances across the halves.
 - this can be done in *O*(*n*) time
- 5. Report the smallest distance found.

Running time analysis.

- Preprocessing takes *O*(*n*log *n*) to sort the points.
- The main algorithm running time satisfies the recursion $T(n) \le 2T(n/2) + O(n)$ overall running time is $O(n\log n)$.

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy. **Efficiency improvement** over naive solutions:

- Sorting $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- *k*-Selection $\Theta(n^2) \longrightarrow \Theta(n)$
- Majority $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- Closest points in the plane $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy. **Efficiency improvement** over naive solutions:

- Sorting $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- *k*-Selection $\Theta(n^2) \longrightarrow \Theta(n)$
- Majority $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- Closest points in the plane $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Other applications:

- Matrix multiplication (Strassen's algorithm): $\Theta(n^3) \longrightarrow \Theta(n^{\log_2 7 + o(1)}) \approx \Theta(n^{2.807})$
- Integer multiplication: $\Theta(B^2) \longrightarrow \Theta(B^{\log_2 3}) \longrightarrow \Theta(B \log B)$
- Fast Fourier Transform: $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy. **Efficiency improvement** over naive solutions:

- Sorting $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- *k*-Selection $\Theta(n^2) \longrightarrow \Theta(n)$
- Majority $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- Closest points in the plane $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Other applications:

- Matrix multiplication (Strassen's algorithm): $\Theta(n^3) \longrightarrow \Theta(n^{\log_2 7 + o(1)}) \approx \Theta(n^{2.807})$
- Integer multiplication: $\Theta(B^2) \longrightarrow \Theta(B^{\log_2 3}) \longrightarrow \Theta(B \log B)$
- Fast Fourier Transform: $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Other considerations:

Practical because of **parallelism**

String Matching

Fundamental Problems. Given a (large) text T and (small) pattern P:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Fundamental Problems. Given a (large) text T and (small) pattern P:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

• Search on your computer: Ctrl + F

Fundamental Problems. Given a (large) text T and (small) pattern P:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

- Search on your computer: Ctrl + F
- Bioinformatics:
 - does a DNA sequence (*T*) contain a particular gene (*P*)?

Fundamental Problems. Given a (large) text T and (small) pattern P:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

- Search on your computer: Ctrl + F
- Bioinformatics:
 - does a DNA sequence (*T*) contain a particular gene (*P*)?
- Computer virus detection
 - does your hard drive store a known program?

Fundamental Problems. Given a (large) text T and (small) pattern P:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

- Search on your computer: Ctrl + F
- Bioinformatics:
 - does a DNA sequence (*T*) contain a particular gene (*P*)?
- Computer virus detection
 - does your hard drive store a known program?
- (Counter) Espionage
 - does a data transmission contain the phrase "ATTACK AT DAWN?"

Fundamental Problems. Given a (large) text T and (small) pattern P:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

- Search on your computer: Ctrl + F
- Bioinformatics:
 - does a DNA sequence (*T*) contain a particular gene (*P*)?
- Computer virus detection
 - does your hard drive store a known program?
- (Counter) Espionage
 - does a data transmission contain the phrase "ATTACK AT DAWN?"

Interesting parameters. |T| is large (~ 1B), |P| is relatively small (~ 1K)

Making Things Precise

Notation

- Σ is a finite **alphabet** or set of **characters**, $\sigma = |\Sigma|$
 - $\Sigma = \{0, 1\}$ is binary alphabet
 - $\Sigma = \{A, B, \ldots\}$ is Roman alphabet
 - $\Sigma = \cdots$ e.g., ASCII, Unicode,
- $\Sigma^n = \Sigma \times \Sigma \times \cdots \times \Sigma = \{(c_1, c_2, \dots, c_n) | \text{ each } c_i \in \Sigma\} = \text{ strings of exactly } n \text{ characters}$
- $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$ = all *finite* strings
- $\Sigma^+ = \bigcup_{n=0}^{\infty} \Sigma^n$ = all *nonempty* (finite) strings
- $\varepsilon \in \Sigma^0$ is the **empty string**
- for $S \in \Sigma^n$, S[i] is *i*th character of *S*
- for $S, T \in \Sigma^* / ST$ is the **concatenation** of *S* and *T*
- for $\widetilde{S \in \Sigma^n}$, $S[\widetilde{i..j}] = S[i]S[i+1] \cdots S[j]$ is a **substring**
 - *S*[0..*j*] is a **prefix**, *S*[*j*..*n*−1] is a **suffix**
 - $S[i..j] = S[i..j-1] \implies S = S[0..n]$

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length *m* (typically $m \ll n$)

Output:

- The index of the **first occurrence** of *P* in *T*, or -1 if *T* does not contain *P* as a substring:
 - $\min\{i \mid T[i, i+m] = P\}$

- T = 10110011011101
- $P_1 = 1101$

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length *m* (typically $m \ll n$)

Output:

- The index of the **first occurrence** of *P* in *T*, or -1 if *T* does not contain *P* as a substring:
 - $\min\{i \mid T[i, i+m) = P\}$

- T = 10110011011101
- $P_1 = 1101$
 - Output: $i \leftarrow 6$

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length *m* (typically $m \ll n$)

Output:

- The index of the **first occurrence** of *P* in *T*, or -1 if *T* does not contain *P* as a substring:
 - $\min\{i \mid T[i, i+m) = P\}$

- *T* = 10110011011101
- $P_1 = 1101$
 - Output: $i \leftarrow 6$
- $P_2 = 000$

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length *m* (typically $m \ll n$)

Output:

- The index of the **first occurrence** of *P* in *T*, or -1 if *T* does not contain *P* as a substring:
 - $\min\{i \mid T[i, i+m) = P\}$

- *T* = 10110011011101
- $P_1 = 1101$
 - Output: *i* ← 6
- $P_2 = 000$
 - Output: $i \leftarrow -1$

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T[i, i+m) = P?
- verify each character individually

Cost = number of comparisons made

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T[i, i+m) = P?
- verify each character individually
 - 1: **procedure** VERIFYMATCH(*T*, *P*, *i*)

```
2: j \leftarrow 0
```

- 3: **while** *j* < *m* **do**
- 4: **if** $T[i+j] \neq P[j]$ **then**
- 5: return FALSE
- 6: end if

```
7: j \leftarrow j+1
```

- 8: end while
- 9: return True
- 10: end procedure

Cost = number of comparisons made

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T[i, i+m) = P?
- verify each character individually
 - 1: **procedure** VERIFYMATCH(*T*, *P*, *i*)

2:
$$j \leftarrow 0$$

- 3: **while** *j* < *m* **do**
- 4: **if** $T[i+j] \neq P[j]$ **then**
- 5: return False
- 6: **end if**

```
7: j \leftarrow j+1
```

- 8: end while
- 9: return True
- 10: end procedure

Cost = number of comparisons made

PollEverywhere Question

What are the worst case and best case running times of VERIFYMATCH?

pollev.com/comp526

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

• is T[i, i+m) = P?

• verify each character individually

1: **procedure** VERIFYMATCH(*T*, *P*, *i*)

```
2: j \leftarrow 0
```

- 3: **while** *j* < *m* **do**
- 4: **if** $T[i+j] \neq P[j]$ **then**
- 5: return FALSE
- 6: **end if**

```
7: j \leftarrow j+1
```

- 8: end while
- 9: return True
- 10: end procedure

Cost = number of comparisons made

Best and Worst Cases:

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T[i, i+m) = P?
- verify each character individually

Cost = number of comparisons made **Brute force.** Guess and check every value i = 0, 1, ..., n - m - 1

- Worst case running time is $\Theta(nm)$
 - What is example has $\cot \Omega(nm)$?
- Best case cost is $\Theta(m)$

Brute Force Example

Example

- *T* = *abbbababbab*
- P = abba

0	1	2	3	4	5	6	7	8	9	10
a	b	b	b	a	b	a	b	b	a	b

procedure

BRUTEFORCEMATCH(*T*, *P*) for *i* = 0, 1, ..., *n* - *m* - 1 do if VERIFYMATCH(*T*, *P*, i) then return i end if end for return -1 end procedure

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?
- Which of these comparisons were unnecessary?
 - How can you search with fewer comparisons?

The **worst case** complexity of brute force search is $\Theta(nm)$but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?
- Which of these comparisons were unnecessary?
 - How can you search with fewer comparisons?

More generally: How can we use results of *previous comparisons* to avoid making unnecessary comparisons in the future?

For Next Time

Consider How could we improve upon BRUTEFORCEMATCH

• How can we use information about *previous matches* in order to avoid doing some *future checks*?

Scratch Notes