# **Lecture 09: Sorting III**

**COMP526: Efficient Algorithms** 

Updated: October 31, 2024

Will Rosenbaum University of Liverpool

#### **Announcements**

- 1. Fourth Quiz, due Friday
  - Similar format to before
  - Covers (Balanced) Binary Search Trees (Lectures 6–7)
  - Quiz is closed resource
    - No books, notes, internet, etc.
    - Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment (Draft) Posted
  - Due Wednesday, 13 November
- 3. Attendance Code:

# **Meeting Goals**

- Discuss non-comparison based sorting
  - RADIXSORT
  - COUNTINGSORT
- · Beyond worst-case sorting
- More Divide & Conquer algorithms

#### **From Last Time**

#### Sorting by Divide and Conquer:

- MERGESORT: worst case  $O(n \log n)$  running time
- QUICKSORT: worst case  $O(n^2)$ , expected time  $O(n \log n)$

#### **From Last Time**

#### Sorting by Divide and Conquer:

- MERGESORT: worst case  $O(n \log n)$  running time
- QUICKSORT: worst case  $O(n^2)$ , expected time  $O(n \log n)$

#### Lower Bounds:

#### **Theorem**

Any comparison-based sorting algorithm requires  $\Omega(n \log n)$  comparisons to sort arrays of length n in the worst case.

#### From Last Time

Sorting by Divide and Conquer:

- MERGESORT: worst case  $O(n \log n)$  running time
- QUICKSORT: worst case  $O(n^2)$ , expected time  $O(n \log n)$

Lower Bounds:

#### **Theorem**

Any comparison-based sorting algorithm requires  $\Omega(n \log n)$  comparisons to sort arrays of length n in the worst case.

So we're, like, done with sorting right?

# Non Comparison-**Based Sorting**

# **Non Comparison-Based Sorting**

#### Theorem

Any **comparison-based** sorting algorithm requires  $\Omega(n \log n)$  comparisons to sort arrays of length n in the worst case.

#### **Recall:**

- A comparison-base sorting algorithm is any algorithm whose decisions are made only made based on the outcomes of comparison operations
- The actual numerical values are not used, only relative order
- For example, adding the same fixed value to each element of the array has no effect on the operations performed by the algorithm

#### Questions.

- What would non-comparison based algorithm look like?
- How efficient could such an algorithm be?

# **Warmup: Sorting Binary Values**

**Question.** How efficiently can we sort a *binary array?* 

$$a = [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1]$$

Method 1. Use the SPLIT method from QUICKSORT with pivot 0.

- This will take  $\Theta(n)$  time!
- Generalization: RADIXSORT

**Method 2.** Count the number of 0's and 1's in *a*, then write this many 0's and 1's in order.

- This will also take  $\Theta(n)$  time!
- Generalization: COUNTINGSORT

**Recall.** Every number can be represented in binary notation:

- 1 = 1<sub>2</sub>
- $2 = 10_2$
- 3 = 112
- 4 = 100<sub>2</sub>
- 5 = 101<sub>2</sub>
- •

#### More formally:

$$(b_k b_{k-1} \cdots b_1 b_0)_2 = \sum_{i=0}^k b_i 2^i$$

where each  $b_i \in \{0, 1\}$ .

**Pictorially:** 10110<sub>2</sub> =

```
procedure BITWISECOMPARE(b, c)
   i \leftarrow k
   while i > 0 do
       if b_i < c_i then
          return TRUE
       else if b_i > c_i then
          return False
       end if
       i \leftarrow i - 1
   end while
   return FALSE
end procedure
```

**Recall.** Every number can be represented in binary notation:

- 1 = 1<sub>2</sub>
- $2 = 10_2$
- 3 = 112
- 4 = 100<sub>2</sub>
- 5 = 101<sub>2</sub>
- •

#### More formally:

$$(b_k b_{k-1} \cdots b_1 b_0)_2 = \sum_{i=0}^k b_i 2^i$$

where each  $b_i \in \{0, 1\}$ .

**Pictorially:** 10110<sub>2</sub> =

```
procedure BITWISECOMPARE(b, c)
   i \leftarrow k
   while i > 0 do
       if b_i < c_i then
          return TRUE
       else if b_i > c_i then
          return False
       end if
       i \leftarrow i - 1
   end while
   return FALSE
end procedure
```

#### PollEverywhere

Which is the largest binary value?

- 1. 100101001110111<sub>2</sub>
- 2. 100011001110111<sub>2</sub>
- $3. 100101011110111_2$
- 4. 10010101111001112



pollev.com/comp526

```
procedure BITWISECOMPARE(b, c)
   i \leftarrow k
   while i > 0 do
       if b_i < c_i then
          return TRUE
       else if b_i > c_i then
          return False
       end if
       i \leftarrow i - 1
   end while
   return FALSE
end procedure
```

**Main Observation.** We can compare values by incrementally reading bits.

- The first bit on which b and c differ determines whether or not b < c</li>
  - Do not need to read the entire value unless
     |b-c| ≤ 1.

```
procedure BITWISECOMPARE(b,c)
i \leftarrow k
while i > 0 do
if b_i < c_i then
return TRUE
else if b_i > c_i then
return FALSE
end if
i \leftarrow i - 1
end while
return FALSE
end procedure
```

**Main Observation.** We can compare values by incrementally reading bits.

- The first bit on which b and c differ determines whether or not b < c</li>
  - Do not need to read the entire value unless
     |b-c| ≤ 1.

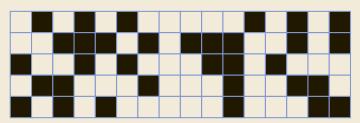
**Radix Sort Idea.** Sort values by incrementally reading bits.

- Compare individual bits rather than entire values
- Split numbers according to bit comparisons

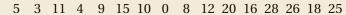
```
procedure BITWISECOMPARE(b, c)
   i \leftarrow k
   while i > 0 do
       if b_i < c_i then
          return TRUE
       else if b_i > c_i then
          return False
       end if
       i \leftarrow i - 1
   end while
   return FALSE
end procedure
```

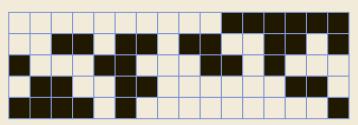
**Consider** the array a = [5, 18, 11, 28, 9, 20, 10, 0, 8, 12, 15, 16, 4, 26, 3, 25]

5 18 11 28 9 20 10 0 8 12 15 16 4 26 3 25

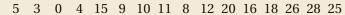


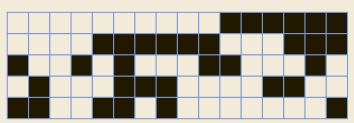
**Consider** the array a = [5, 18, 11, 28, 9, 20, 10, 0, 8, 12, 15, 16, 4, 26, 3, 25]





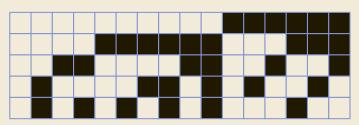
**Consider** the array a = [5, 18, 11, 28, 9, 20, 10, 0, 8, 12, 15, 16, 4, 26, 3, 25]





**Consider** the array a = [5, 18, 11, 28, 9, 20, 10, 0, 8, 12, 15, 16, 4, 26, 3, 25]

0 3 4 5 8 9 10 11 12 15 16 18 20 25 26 28



Denote the *b*th bit of a[i] by a[i][b]

```
1: procedure BITSPLIT(a, min, max, b)
 2:
         i \leftarrow \min, j \leftarrow \max
 3:
         while i < j do
             while a[i][b] = 0 and i < \max do
 4:
 5:
                 i \leftarrow i + 1
 6:
             end while
 7:
             while a[j][b] = 1 and j > \min do
 8:
                 i \leftarrow i - 1
             end while
 9:
             if i = \max \text{ or } j = \min \text{ then }
10:
11:
                 return i or j
12:
             end if
13:
             SWAP(a, i, j)
14:
             i \leftarrow i+1, j \leftarrow j+1
         end while
15:
16:
         return i-1
17: end procedure
```

#### Denote the *b*th bit of a[i] by a[i][b]

```
1: procedure BITSPLIT(a, min, max, b)
 2:
         i \leftarrow \min, j \leftarrow \max
 3:
         while i < j do
             while a[i][b] = 0 and i < \max do
 4:
 5:
                 i \leftarrow i + 1
 6:
             end while
 7:
             while a[j][b] = 1 and j > \min do
 8:
                 i \leftarrow i - 1
             end while
 9:
             if i = \max \text{ or } j = \min \text{ then }
10:
11:
                 return i or j
12:
             end if
13:
             SWAP(a, i, j)
14:
             i \leftarrow i+1, j \leftarrow j+1
         end while
15:
16:
         return i-1
17: end procedure
```

#### PollEverywhere

What is the running time of BITSPLIT as a function of  $n = \max - \min$ ?



pollev.com/comp526

#### Denote the *b*th bit of a[i] by a[i][b]

```
1: procedure BITSPLIT(a, min, max, b)
 2:
         i \leftarrow \min, j \leftarrow \max
 3:
         while i < i do
             while a[i][b] = 0 and i < \max do
 4:
 5:
                 i \leftarrow i + 1
 6:
             end while
 7:
             while a[j][b] = 1 and j > \min do
 8:
                 i \leftarrow i - 1
             end while
 9:
10:
             if i = \max \text{ or } j = \min \text{ then }
11:
                 return i or j
12:
             end if
13:
             SWAP(a, i, j)
14:
             i \leftarrow i+1, j \leftarrow j+1
         end while
15:
16:
         return i-1
17: end procedure
```

```
1: procedure RADIXSORT(a, b, \min, \max)
2: if b < 0 or \min = \max then
3: return
4: end if
5: i \leftarrow \text{BITSPLIT}(a, \min, \max, b)
6: RADIXSORT(a, \min, i, b - 1)
7: RADIXSORT(a, i + 1, \max, b - 1)
8: end procedure
```

Denote the *b*th bit of a[i] by a[i][b]

#### **Analysis of RADIXSORT (informal)**

- Consider each value of b = B, B 1, ..., 0
- All values a[i][b] are read once in all calls at level b
  - total running time on level b is Θ(n)
  - $\implies$  Total running time is  $\Theta(Bn)$ .

```
    procedure RADIXSORT(a, b, min, max)
    if b < 0 or min = max then</li>
    return
    end if
    i ← BITSPLIT(a, min, max, b)
    RADIXSORT(a, min, i, b − 1)
    RADIXSORT(a, i + 1, max, b − 1)
```

8: end procedure

Denote the *b*th bit of a[i] by a[i][b]

#### **Analysis of RADIXSORT (informal)**

- Consider each value of b = B, B 1, ..., 0
- All values a[i][b] are read once in all calls at level b
  - total running time on level b is Θ(n)
  - $\implies$  Total running time is  $\Theta(Bn)$ .

```
1: procedure RADIXSORT(a, b, min, max)2: if b < 0 or min = max then
```

- 3: return
- 4: **end if**
- 5:  $i \leftarrow BITSPLIT(a, \min, \max, b)$
- 6: RADIXSORT(a, min, i, b-1)
- 7: RADIXSORT( $a, i+1, \max, b-1$ )
- 8: end procedure

**Question.** Is the better or worse than  $\Theta(n \log n)$ ?

#### **RadixSort Visualization**

https://willrosenbaum.com/blog/2022/radix-sort/

# A Simple Idea

**Question.** What if we already know the set of **all possible** values stored in *a*?

- Suppose the possible values are 0, 1, ..., m
- Form an array *c* of counts
  - c[i] stores the number of times i occurs in a.

#### Example.

- a = [3,0,1,2,0,1,2,1,1,1,2,0,0,3,3,1,2,0,0,0,1,0,3]
- c = [8, 7, 4, 4]

**Question.** Given *c*, how can we sort *a*?

• Add c[i] copies of i to a!

```
1: procedure COUNTINGSORT(a, n, m)
 2:
         c \leftarrow 0-array of length m
 3:
         for i = 0, 1, ..., n-1 do
 4:
             c[a[i]] \leftarrow c[a[i]] + 1
         end for
 5:
 6:
       i \leftarrow 0
 7:
         for j = 0, 1, ..., m do
             for k = 0, 1, ..., c[j] - 1 do
 8:
 9:
                 a[i] \leftarrow j
10:
                 i \leftarrow i + 1
             end for
11:
12:
         end for
13: end procedure
```

```
1: procedure COUNTINGSORT(a, n, m)
 2:
         c \leftarrow 0-array of length m
 3:
        for i = 0, 1, ..., n-1 do
 4:
             c[a[i]] \leftarrow c[a[i]] + 1
 5:
        end for
 6:
       i \leftarrow 0
 7:
        for j = 0, 1, ..., m do
 8:
             for k = 0, 1, ..., c[i] - 1 do
                 a[i] \leftarrow j
 9:
                 i \leftarrow i + 1
10:
             end for
11:
         end for
12:
13: end procedure
```

#### PollEverywhere

What is the running time of COUNTINGSORT where a has size n and contains values from 0 to m-1?

1.  $\Theta(nm)$ 

4.  $\Theta(n + \log m)$ 

2.  $\Theta(n \log m)$ 3.  $\Theta(n+m)$ 

5.  $\Theta(\log n + m)$ 



pollev.com/comp526

```
1: procedure COUNTINGSORT(a, n, m)
 2:
         c \leftarrow 0-array of length m
 3:
         for i = 0, 1, ..., n-1 do
 4:
             c[a[i]] \leftarrow c[a[i]] + 1
         end for
 5:
 6:
         i \leftarrow 0
 7:
         for j = 0, 1, ..., m do
             for k = 0, 1, ..., c[j] - 1 do
 8:
 9:
                 a[i] \leftarrow j
10:
                 i \leftarrow i + 1
             end for
11:
12:
         end for
13: end procedure
```

#### **Analysis:**

# Sorting in the Real World

# Real-World Sorting?

So far we've analyzed the running time of sorting on worst-case inputs

Question. Are "typical" inputs to sorting close to the worst case?

- What are worst-case inputs?
  - in general, "worst-case" depends on the algorithm
  - ...but our  $\Omega(n \log n)$  comparison lower bound can be extended to *random permutations*
  - $\implies$  for any algorithm, sorting a random array requires  $\Omega(n \log n)$  comparisons in expectation
- Are typical inputs to sorting algorithms similar to (uniformly) random arrays in the real world?
  - if they are, there isn't much we can do (lower bound)
  - but if they aren't, can our sorting algorithm adapt to the input and exploit its structure?

# **Partially Sorted Inputs**

Often, **real world** data to be sorted contains **runs** of increasing values

- Even random arrays will have *some* increasing sub-strings
- Only a decreasing array has all runs of size 1

**Question.** Can we exploit existing increasing runs in our data to sort it faster?

#### PollEverywhere

Which sorting algorithm exploits the idea that combining sorted arrays is easier than sorting from scratch?

1. HEAPSORT

3. QUICKSORT

2. MERGESORT

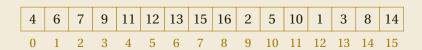
4. RadixSort



pollev.com/comp526

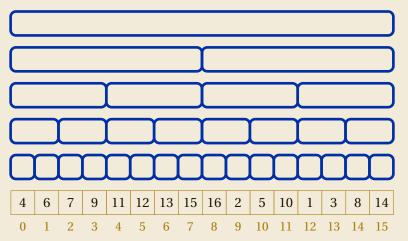
# **MergeSort Behaving Badly**

#### A nice input?



# **MergeSort Behaving Badly**

#### **MergeSort merges**



**Question.** Which merges were **unnecessary**?

# MergeSort with a Simple Check

#### **A Simple Improvement**

- Only MERGE if a[i...k] is not already sorted
- Since a[i...j] and a[j+1...k] are both sorted, this check can be done in O(1) time.
  - How?

```
1: procedure MERGESORT(a, i, k)
        if i < k then
 2:
             j \leftarrow \lfloor (i+k)/2 \rfloor
 3:
             MERGESORT(a, i, j)
 4:
             MERGESORT(a, j + 1, k)
 5:
             b \leftarrow \text{COPY}(a, i, j)
 6:
             c \leftarrow \text{COPY}(a, j+1, k)
 7:
             MERGE(b, c, a, i)
 8:
         end if
 9:
10: end procedure
```

# MergeSort with a Simple Check

#### **A Simple Improvement**

- Only MERGE if a[i...k] is not already sorted
- Since a[i...j] and a[j+1...k] are both sorted, this check can be done in O(1) time.
  - How?

```
1: procedure MERGESORT+(a, i, k)
        if i < k then
 2:
            j \leftarrow \lfloor (i+k)/2 \rfloor
 3:
            MERGESORT(a, i, j)
 4:
            MERGESORT(a, j + 1, k)
 5:
             > check if already sorted
 6:
            if a[j] \le a[j+1] then
 7:
                return
 8:
            end if
 9:
            b \leftarrow \text{COPY}(a, i, j)
10:
            c \leftarrow \text{COPY}(a, j+1, k)
11:
            Merge(b, c, a, i)
12:
        end if
13:
14: end procedure
```

# MergeSort with a Simple Check

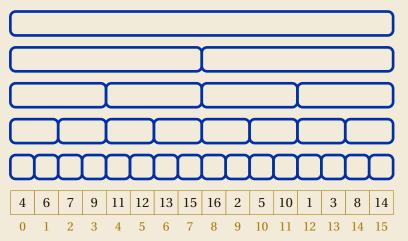
## **A Simple Improvement**

- Only MERGE if a[i...k] is not already sorted
- Since a[i...j] and a[j+1...k] are both sorted, this check can be done in O(1) time.
  - How?
- MERGESORT+ still has *best case* running time Θ(*n*log *n*)
  - why?

How could we improve MERGESORT so that **best case** running time is  $o(n \log n)$ ?

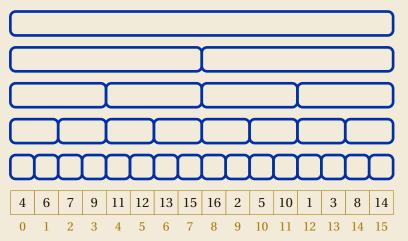
```
1: procedure MERGESORT+(a, i, k)
        if i < k then
 2:
            j \leftarrow \lfloor (i+k)/2 \rfloor
 3:
            MERGESORT(a, i, j)
 4:
            MERGESORT(a, j + 1, k)
 5:
             > check if already sorted
 6:
            if a[j] \le a[j+1] then
 7:
                return
 8:
            end if
 9:
            b \leftarrow \text{COPY}(a, i, j)
10:
            c \leftarrow \text{COPY}(a, j+1, k)
11.
            MERGE(b, c, a, i)
12:
        end if
13:
14: end procedure
```

## **MergeSort Merges**



**Question.** Which **recursive calls** were unnecessary?

## **MergeSort Merges**



**Question.** How could we have avoided unnecessary recursive calls?

#### **Existing Runs**



**Idea.** Use existing runs in the data and only sort **runs**!



## PollEverywhere

Which merge would it be more efficient to perform **first**?

- 1. 1 and 2 first
- 2. 2 and 3 first

3. no (significant) difference



pollev.com/comp526



Merge order matters!

# **Merge Trees and PowerSort**

## **Overall Strategy**

- MergeSort but:
  - · don't sort runs that are already sorted
  - · only split along run boundaries
- Remaining design choice: In what *order* should we perform the MERGE operations?



# Merge Trees and PowerSort

## **Overall Strategy**

- MERGESORT but:
  - · don't sort runs that are already sorted
  - only split along run boundaries
- Remaining design choice: In what *order* should we perform the MERGE operations?
  - optimal merge trees are possible, but too costly to find
  - use good **approximation** to optimal merge tree:
    - ⇒ PowerSort algorithm used by Python
      - developed by Sebastian Wild (my predecessor for COMP526) and others
      - open competition for improvements!



# Divide & Conquer

We've seen how effective the Divide & Conquer strategy is for **sorting** 

... what about Divide & Conquer other problems?

We've seen how effective the Divide & Conquer strategy is for **sorting** ... what about Divide & Conquer **other problems**?

#### **Problem 1.** *k*-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

We've seen how effective the Divide & Conquer strategy is for **sorting** ... what about Divide & Conquer **other problems**?

#### **Problem 1.** *k*-Selection:

Given an array a of n numbers, find the kth largest number

#### **Problem 2.** Majority:

 Given an array a of n items, is there an item that is repeated more than > n/2 times?

We've seen how effective the Divide & Conquer strategy is for **sorting** ... what about Divide & Conquer **other problems**?

#### **Problem 1.** *k*-Selection:

Given an array a of n numbers, find the kth largest number

#### **Problem 2.** Majority:

• Given an array a of n items, is there an item that is repeated more than > n/2 times?

There are **WAY MORE** applications of Divide & Conquer as well!

Versatile general problem solving strategy

**Problem.** Given an array *a* of *n* numbers, find the *k*th smallest number.

**Problem.** Given an array a of n numbers, find the kth smallest number. Simple solution.

- sort a in  $O(n \log n)$  time
- return *a*[*k*]

Can we do better?

**Problem.** Given an array a of n numbers, find the kth smallest number. Simple solution.

- sort a in  $O(n \log n)$  time
- return *a*[*k*]

#### Can we do better?

## Modify QuickSort!

- Choose pivot p
- Perform split
- only recurse on half that contains kth smallest value
  - this will be the half that contains index k

**Problem.** Given an array a of n numbers, find the kth smallest number. Simple solution.

- sort a in  $O(n \log n)$  time
- return a[k]

## Can we do better? Modify QuickSort!

- Choose pivot p
- · Perform split
- only recurse on half that contains kth smallest value
  - this will be the half that contains index *k*

```
1: procedure
    QUICKSELECT(a, min, max, k)
 2:
        if max - min < 1 then
 3:
           return a[min]
 4:
        end if
        p \leftarrow \text{SELECTPIVOT}(a, \min, \max)
 5:
       j \leftarrow \text{SPLIT}(a, \min, \max, p)
 6:
 7:
        if j = k then
           return a[k]
 8:
        else if i < k then
 9:
           QUICKSELECT(a, j + 1, \max, k)
10:
11:
        else
12:
           QUICKSELECT(a, min, i-1, k)
13:
        end if
14: end procedure
```

## **For Next Time**

#### **Questions to Consider**

- 1. If we choose a pivot uniformly at random for QUICKSELECT, what is the procedure's expected running time?
- 2. Can we choose a pivot *deterministically* that gives this same running time?
- 3. How efficiently can we solve the majority problem?
  - Hint: if a value *v* is a majority, then it must be a majority on some half of the array.

## Starting next week:

Text Searching

# **Scratch Notes**