		I																				E	2	(2					L		C		C									
	L.							Ľ,				I			J							C			٦		7			U		J						l					
0000000	00	0 0 0	0 0 0	0.0	0	0 0		0 0	0 0	0	0	0.0	0	0	0 0	0 0		0	0 0	0 0	0 () 0 (0	0 0	0 il	0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0	0 0	0	0.0				0 0	
1234567	83	10 11 1	2 13 14	15 IE	17 18	19 20	0 21 2	2 23	24 25	26 2	7 28 3	29 BO	31.	32 33	34-3	5 36	37 31	39.4	0 41	42 43	3 4 4 4	5 46 4	7 48	49 50	51 52	2 53 5	54 55	56 57	58.5	9 60	61 63	63.6	4 65	66.6	68	59 70	71	12 7	3 74	75 75	\overline{n}	18.7	3 80
1 1 1 1 1 1	11	1	1.1	1	11	1.1	1	1	1	11	1	11	1		1	1	11	1	11	11	1	11	1	11	11	1	11	11	1	11	11	1	1 1	1 1	1	1 1	1	1 1	1	1.1	1	1 1	1
2 2 🛛 2 2 2 2	2 2 2	2 2 2	2 2 2	22	2	2 2	2	22	2 2		2 2	22	2	22	2 2	2	2 2	2	22	2 2	2 2	2 2 2	2 2	22	2 2	2	2 2	2 2	2	22	2 2	2	22	2 2	2	2 2	2	2 2	2	2 2	2	2 2	2
3333333	333	3 3 3	333	3 3	3	3	3	33	33	3	3	33	3	33	3 3	33	3	3	33	33	3 :	3 3 3	3 3	33	3 3	3	33	33	3	33	3 3	3	33	3 3	3	33	3	3 3	3	33	3	3	3
444444	44	444	444	4 4	4 4	4 4	4	44	44	4 4	4 4	44	4	44	4 4	44	4	4	44	4 4	4 4	4 4	4	44	4 4	4	44	44	4 4	44	4 4	4	4 4	4 4	4	44	4	4 4		4 4	4	4	4
555555	555	5 5 5	5 5	5	5 5	5 5		55	5	5 5	i 5	5		55		55	5 5	5	5	5 5	5 5	5 5 5	5 5	55	5 5	5	55	55	5 !	55	5 5	5 !	55	5 5	5	55	5	5 5	5	5 5	5	5 5	5
6666666	6 6	66	66	6 6	6 6	6.6	6	6 6	66	6 (56	66	6	6 6	6 (66	6 6	6	66	6 6	6	66	56	66	6 6	6 6	66	66	6	66	S E	6	66	6 8	6	66	5	6 6	6	6 6	5	6 8	6
11111	11	17		77	7 7	7	7		77	7	11	7 7	7	17	7	7 7	7 1		7 7	77	7	11	17	77	77	7	77	77		7 7	17	7	1 1		7			7	7	7	7		7

Lecture 09: Sorting III

COMP526: Efficient Algorithms

Updated: October 31, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Fourth Quiz, due Friday
 - Similar format to before
 - Covers (Balanced) Binary Search Trees (Lectures 6-7)
 - Quiz is closed resource
 - No books, notes, internet, etc.
 - Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment Posted
 - Due Wednesday, 13 November
- 3. Attendance Code:

695655

Meeting Goals

- Discuss non-comparison based sorting
 - RADIXSORT
 - COUNTINGSORT
- Beyond worst-case sorting
- More Divide & Conquer algorithms

From Last Time

Sorting by Divide and Conquer:

- MERGESORT: worst case *O*(*n*log *n*) running time
- QUICKSORT: worst case $O(n^2)$, expected time $O(n \log n)$

From Last Time

Sorting by Divide and Conquer:

- MERGESORT: worst case *O*(*n*log *n*) running time
- QUICKSORT: worst case $O(n^2)$, expected time $O(n \log n)$

Lower Bounds:

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons to sort arrays of length n in the worst case.

From Last Time

Sorting by Divide and Conquer:

- MERGESORT: worst case *O*(*n*log *n*) running time
- QUICKSORT: worst case $O(n^2)$, expected time $O(n \log n)$

Lower Bounds:

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons to sort arrays of length n in the worst case.

So we're, like, done with sorting right?

Non **Comparison-Based Sorting**

Non Comparison-Based Sorting

Theorem

Any **comparison-based** sorting algorithm requires $\Omega(n \log n)$ comparisons to sort arrays of length n in the worst case.

Recall:

- A **comparison-base sorting algorithm** is any algorithm whose decisions are made only made based on the outcomes of comparison operations
- The actual numerical values are not used, only relative order
- For example, adding the same fixed value to each element of the array has *no effect* on the operations performed by the algorithm

Non Comparison-Based Sorting

Theorem

Any **comparison-based** sorting algorithm requires $\Omega(n \log n)$ comparisons to sort arrays of length n in the worst case.

Recall:

- A **comparison-base sorting algorithm** is any algorithm whose decisions are made only made based on the outcomes of comparison operations
- The actual numerical values are not used, only relative order
- For example, adding the same fixed value to each element of the array has *no effect* on the operations performed by the algorithm

Questions.

- What would **non**-comparison based algorithm look like?

Warmup: Sorting Binary Values

Question. How efficiently can we sort a *binary array*?

a = [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1]

Warmup: Sorting Binary Values

Question. How efficiently can we sort a *binary array*?

a = [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1]

Method 1. Use the SPLIT method from QUICKSORT with pivot 0.

- This will take $\Theta(n)$ time!
- Generalization: RADIXSORT

Warmup: Sorting Binary Values

Question. How efficiently can we sort a *binary array*?

a = [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1]

Method 1. Use the SPLIT method from QUICKSORT with pivot 0.

- This will take $\Theta(n)$ time!
- Generalization: RADIXSORT

Method 2. Count the number of 0's and 1's in *a*, then write this many 0's and 1's in order.

- This will also take $\Theta(n)$ time!
- Generalization: COUNTINGSORT

Recall. Every number can be represented in binary notation:

- 1 = 1₂
- 2 = 10₂
- 3 = 11₂
- 4 = 100₂
- 5 = 101₂
- •

More formally:

$$(\underline{b_k b_{k-1} \cdots b_1 b_0})_2 = \sum_{i=0}^k b_i 2^i$$

where each $b_i \in \{0, 1\}$.

Pictorially: $10110_2 =$

Recall. Every number can be represented in binary notation:

- 1 = 1₂
- 2 = 10₂
- 3 = 11₂
- 4 = 100₂
- 5 = 101₂
- •

More formally:

$$(b_k b_{k-1} \cdots b_1 b_0)_2 = \sum_{i=0}^k b_i 2^i$$

where each $b_i \in \{0, 1\}$.

Pictorially: 10110₂ =

Comparing binary values. To determine if *b* < *c*, perform *bit-wise* comparison.

- 1: **procedure** BITWISECOMPARE(*b*, *c*)
- 2: $i \leftarrow k$
- 3: **while** i > 0 **do**
- 4: **if** $b_i < c_i$ **then**
- 5: **return** TRUE
- 6: else if $b_i > c_i$ then 7: return FALSE
- 8: end if
- 9: $i \leftarrow i 1$
- 10: end while
- 11: return False
- 12: end procedure $v v^{-1}$

Values

PollEverywhere

Which is the largest binary value? 1. 1000101001110111_2 2. 100001001110111_2 -3. 10010101010101011_2 -4. 100000101000111_2

pollev.com/comp526

Comparing binary values. To determine if *b* < *c*, perform *bit-wise* comparison.

- 1: **procedure** BITWISECOMPARE(*b*, *c*)
- 2: $i \leftarrow k$

6:

7:

- 3: **while** *i* > 0 **do**
 - **if** $b_i < c_i$ **then**
 - return True
 - else if $b_i > c_i$ then
 - return False
- 8: end if
- 9: $i \leftarrow i 1$
- 10: end while
- 11: return False
- 12: end procedure

Main Observation. We can compare values by incrementally reading bits.

- The first bit on which *b* and *c* differ determines whether or not *b* < *c*
 - Do not need to read the entire value unless $|b-c| \le 1$.

Comparing binary values. To determine if *b* < *c*, perform *bit-wise* comparison.

- 1: **procedure** BITWISECOMPARE(*b*, *c*)
- 2: $i \leftarrow k$
- 3: **while** i > 0 **do**
- 4: **if** $b_i < c_i$ **then**
- 5: return True
- 6: **else if** $b_i > c_i$ then
- 7: return FALSE
- 8: **end if**
- 9: $i \leftarrow i 1$
- 10: end while
- 11: return False
- 12: end procedure

Main Observation. We can compare values by incrementally reading bits.

- The first bit on which *b* and *c* differ determines whether or not *b* < *c*
 - Do not need to read the entire value unless $|b-c| \le 1$.

Radix Sort Idea. Sort values by incrementally reading bits.

- Compare individual bits rather than entire values
- Split numbers according to bit comparisons

Comparing binary values. To determine if *b* < *c*, perform *bit-wise* comparison.

- 1: **procedure** BITWISECOMPARE(*b*, *c*)
- 2: $i \leftarrow k$
- 3: **while** *i* > 0 **do**
- 4: **if** $b_i < c_i$ **then**
- 5: return True
- 6: **else if** $b_i > c_i$ then
- 7: return False
- 8: **end if**
- 9: $i \leftarrow i 1$
- 10: end while
- 11: return False
- 12: end procedure

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

1:	procedure BITSPLIT(<i>a</i> , min, max, <i>b</i>)	
2:	$i \leftarrow \min, j \leftarrow \max$	
3:	while $i < j$ do	
4:	while $a[i][b] = 0$ and $i < \max \mathbf{d}$	0
5:	$i \leftarrow i + 1$	
6:	end while	
7:	while $a[j][b] = 1$ and $j > \min \mathbf{d}$	D
8:	$j \leftarrow j - 1$	
9:	end while	
10:	if $i = \max \text{ or } j = \min \text{ then}$	
11:	return <i>i</i> or <i>j</i>	
12:	end if	_
13:	$SWAP(a, i, j) \iff SWay$	D
14:	$i \leftarrow i+1, j \leftarrow j+1$	
15:	end while end	IC I
16:	return $i-1$	
17:	end procedure	~~
	•	

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

1.	meandure DIECDUE (a min mouth)	
	procedure BITSPLIT(<i>a</i> , min, max, <i>b</i>)	PollEverywhere
2:	$i \leftarrow \min, j \leftarrow \max$	1 onlivery where
3:	while $i < j$ do	What is the running time of
4:	while $a[i][b] = 0$ and $i < \max do$	BITSPLIT as a function of
5:	$i \leftarrow i + 1$	
6:	end while	$n = \max - \min$?
7:	while <i>a</i> [<i>j</i>][<i>b</i>] = 1 and <i>j</i> > min do	
8:	$j \leftarrow j - 1$ —	国大学学校研究国 本部研究学校研究
9:	end while	
10:	if $i = \max \text{ or } j = \min \text{ then}$	
11:	return <i>i</i> or <i>j</i>	
12:	end if	EN662220
13:	$\underbrace{\text{SWAP}(a, i, j)}_{i \leftarrow i+1, j \leftarrow j+1} \leftarrow$	pollev.com/comp526
14:	$i \leftarrow i+1, j \leftarrow j+1$	porrev.com/compoze
15:	end while	
16:	return $i-1$ $Q(n)$ tota	I ops performed
17:	end procedure	

Everywhere

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

1:	procedure BITSPLIT(<i>a</i> , min, max(b)
2:	$i \leftarrow \min, j \leftarrow \max$
3:	while <i>i</i> < <i>j</i> do
4:	while <i>a</i> [<i>i</i>][<i>b</i>] = 0 and <i>i</i> < max do
5:	$i \leftarrow i + 1$
6:	end while
7:	while <i>a</i> [<i>j</i>][<i>b</i>] = 1 and <i>j</i> > min do
8:	$j \leftarrow j - 1$
9:	end while
10:	if $i = \max \text{ or } j = \min \text{ then}$
11:	return <i>i</i> or <i>j</i>
12:	end if
13:	SWAP(<i>a</i> , <i>i</i> , , <i>j</i>)
14:	$i \leftarrow i+1, j \leftarrow j+1$
15:	end while
16:	return <i>i</i> – 1
17:	end procedure

1: procedure RADIXSORT(<i>a</i> (<i>b</i> ,min,max)
2: if $b < 0$ or min = max then
3: return
4: end if
5: $i \leftarrow BITSPLIT(a, \min, \max, b)$
6: RADIXSORT(a , min, $i, b-1$)
7: RADIXSORT($a, i+1, \max, b-1$)
8: end procedure
B-bit values
Radix Sort (a, B, O, N-1)
Rudix Sort (a) BH

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

Analysis of RADIXSORT (informal)

- Consider each value of $b = B, B 1, \dots, 0$ b = $B, B 1, \dots, 0$ b = b + b + b + 3: b = b + b + b + 3: b = b + b + b + 3: b = b + b + 3: b = b + b + 3: b = b +
- All values *a*[*i*][*b*] are read once in all calls at level b
 - total running time on level b is $\Theta(n)$
 - Total running time is $\Theta(Bn)$.
 - " # values

- 1: **procedure** RADIXSORT(*a*, *b*, min, max)
 - if h < 0 or min = max then
 - return

end if

2:

5:

- $i \leftarrow \text{BITSPLIT}(a, \min, \max, b)$
- RADIXSORT($a, \min, i, b-1$) 6:
- 7: RADIXSORT $(a, i+1, \max, b-1)$
- 8: end procedure

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

Analysis of RADIXSORT (informal)

 Consider each value of *b* = *B*, *B* - 1,...,0

 $\Theta(I)$

- All values *a*[*i*][*b*] are read once in all calls at level *b*
 - total running time on level
 b is Θ(*n*)

Total running time is

1: **procedure** RADIXSORT(*a*, *b*, min, max)

- 2: **if** b < 0 or min = max **then**
- 3: return
- 4: **end if**
- 5: $i \leftarrow \text{BITSPLIT}(a, \min, \max, b)$
- 6: RADIXSORT(a, min, i, b-1)
- 7: RADIXSORT $(a, i+1, \max, b-1)$
- 8: end procedure

Question. Is the better or worse than $\Theta(n \log n)$?

RadixSort Visualization

https://willrosenbaum.com/blog/2022/radix-sort/

CountingSort

A Simple Idea

Question. What if we already know the set of all possible values stored in a?

- Suppose the possible values are 0, 1, ..., m
- Form an array *c* of counts
 - *c*[*i*] stores the number of times *i* occurs in *a*.

Example.

- a = [3, 0, 1, 2, 0, 1, 2, 1, 1, 1, 2, 0, 0, 3, 3, 1, 2, 0, 0, 0, 1, 0, 3]• c = [0, 7, 4, 4]

A Simple Idea

Question. What if we already know the set of **all possible** values stored in *a*?

- Suppose the possible values are 0, 1, ..., *m*
- Form an array *c* of counts
 - *c*[*i*] stores the number of times *i* occurs in *a*.

Example.

- a = [3,0,1,2,0,1,2,1,1,1,2,0,0,3,3,1,2,0,0,0,1,0,3]

Question. Given *c*, how can we sort *a*?

0000000011111122223333

A Simple Idea

Question. What if we already know the set of **all possible** values stored in *a*?

- Suppose the possible values are 0, 1, ..., *m*
- Form an array *c* of counts
 - *c*[*i*] stores the number of times *i* occurs in *a*.

Example.

- a = [3, 0, 1, 2, 0, 1, 2, 1, 1, 1, 2, 0, 0, 3, 3, 1, 2, 0, 0, 0, 1, 0, 3]
- c = [8, 7, 4, 4]

Question. Given *c*, how can we sort *a*?

• Add *c*[*i*] copies of *i* to *a*!

max value (01-1m) CountingSort J 1: procedure COUNTINGSORT(a, n, m) increment c at index a CiJ 2: $c \leftarrow 0$ -array of length m 3: for i = 0, 1, ..., n - 1 do 4: $c[a[i]] \leftarrow c[a[i]] + 1$ 5: end for write sorted values to a 6: i+0_value 7: **for**j = 0, 1, ..., m **do** for k = 0, 1, ..., c[j] - 1 do 8: 9: $a[i] \leftarrow j$ $i \leftarrow i + 1$ 10: 11: end for 12: end for 13: end procedure

CountingSort

1:	procedure COUNTINGSORT(<i>a</i> , <i>n</i> , <i>m</i>)
2:	$c \leftarrow 0$ -array of length m
3:	for $i = 0, 1,, n - 1$ do
4:	$c[a[i]] \leftarrow c[a[i]] + 1$
5:	end for
6:	$i \leftarrow 0$
7:	for $j = 0, 1,, m$ do
8:	for $k = 0, 1,, c[j] - 1$ do
9:	$a[i] \leftarrow j$
10:	$i \leftarrow i + 1$
11:	end for
12:	end for
13:	end procedure

PollEverywhere

What is the running time of COUNTINGSORT where *a* has size n and contains values from 0 to m - 1?

1. Θ(*nm*)

4. $\Theta(n + \log m)$

Length of

2. $\Theta(n\log m)$ 3 $\Theta(n+m)$

5. $\Theta(\log n + m)$

pollev.com/comp526

CountingSort

Sorting in the Real World

Real-World Sorting?

So far we've analyzed the running time of sorting on worst-case inputs

Question. Are "typical" inputs to sorting close to the worst case?

Real-World Sorting?

So far we've analyzed the running time of sorting on worst-case inputs

Question. Are "typical" inputs to sorting close to the worst case?

• What are worst-case inputs?

Real-World Sorting?

So far we've analyzed the running time of sorting on **worst-case** inputs

Question. Are "typical" inputs to sorting close to the worst case?

- What are worst-case inputs?
 - in general, "worst-case" depends on the algorithm
 - ... but our $\Omega(n \log n)$ comparison lower bound can be extended to *random permutations*
 - \implies for any algorithm, sorting a random array requires $\Omega(n \log n)$ comparisons in expectation

Real-World Sorting?

So far we've analyzed the running time of sorting on worst-case inputs

Question. Are "typical" inputs to sorting close to the worst case?

- What are worst-case inputs?
 - in general, "worst-case" depends on the algorithm
 - ... but our Ω(*n*log *n*) comparison lower bound can be extended to *random permutations*
 - \implies for any algorithm, sorting a random array requires $\Omega(n \log n)$ comparisons in expectation
- Are typical inputs to sorting algorithms similar to (uniformly) random arrays **in the real world**?
 - if they are, there isn't much we can do (lower bound)
 - but if they aren't, can our sorting algorithm **adapt** to the input and **exploit** its structure?

Partially Sorted Inputs

Often, real world data to be sorted contains runs of increasing values

- · Even random arrays will have some increasing sub-strings
- Only a decreasing array has all runs of size 1

Partially Sorted Inputs

Often, real world data to be sorted contains runs of increasing values

- Even random arrays will have some increasing sub-strings
- Only a decreasing array has all runs of size 1

Question. Can we exploit existing increasing runs in our data to sort it faster?

Partially Sorted Inputs

Often, real world data to be sorted contains runs of increasing values

- Even random arrays will have some increasing sub-strings
- Only a decreasing array has all runs of size 1

Question. Can we exploit existing increasing runs in our data to sort it faster?

PollEverywhere

Which sorting algorithm exploits the idea that combining sorted arrays is easier than sorting from scratch?

- 1. HEAPSORT 3. QUICKSORT
- 2. MergeSort

4. RADIXSORT

pollev.com/comp526

MergeSort Behaving Badly

A nice input?

MergeSort Behaving Badly

MergeSort merges

Question. Which merges were unnecessary?

MergeSort with a Simple Check

A Simple Improvement

- Only MERGE if *a*[*i*...*k*] is not already sorted
- Since *a*[*i*...*j*] and *a*[*j*+1...*k*] are both sorted, this check can be done in *O*(1) time.
 - How?

MergeSort with a Simple Check

A Simple Improvement

- Only MERGE if *a*[*i*...*k*] is not already sorted
- Since *a*[*i*...*j*] and *a*[*j*+1...*k*] are both sorted, this check can be done in *O*(1) time.
 - How?

1:	procedure MERGESORT+(<i>a</i> , <i>i</i> , <i>k</i>)
2:	if <i>i</i> < <i>k</i> then
3:	$j \leftarrow \lfloor (i+k)/2 \rfloor$
4:	MergeSort(<i>a</i> , <i>i</i> , <i>j</i>)
5:	MERGESORT($a, j+1, k$)
6:	check if already sorted
7:	if $a[j] \le a[j+1]$ then
8:	return
9:	end if
10:	$b \leftarrow \text{COPY}(a, i, j)$
11:	$c \leftarrow \text{COPY}(a, j+1, k)$
12:	MERGE(<i>b</i> , <i>c</i> , <i>a</i> , <i>i</i>)
13:	end if
14:	end procedure

MergeSort with a Simple Check

A Simple Improvement

- Only MERGE if *a*[*i*...*k*] is not already sorted
- Since *a*[*i*...*j*] and *a*[*j*+1...*k*] are both sorted, this check can be done in *O*(1) time.

• How?

 MERGESORT+ still has best case running time Θ(n log n)
 why?

How could we improve MERGESORT so that **best case** running time is *o*(*n*log *n*)?

1:	procedure MERGESORT+(<i>a</i> , <i>i</i> , <i>k</i>)
2:	if <i>i</i> < <i>k</i> then
3:	$j \leftarrow \lfloor (i+k)/2 \rfloor$
4:	MERGESORT(<i>a</i> , <i>i</i> , <i>j</i>)
5:	MERGESORT($a, j+1, k$)
6:	▷ check if already sorted
7:	if $a[j] \le a[j+1]$ then
8:	return
9:	end if
10:	$b \leftarrow \text{COPY}(a, i, j)$
11:	$c \leftarrow \text{COPY}(a, j+1, k)$
12:	MERGE(b, c, a, i)
13:	end if
14:	end procedure

MergeSort Merges

Question. Which recursive calls were unnecessary?

MergeSort Merges

Question. How could we have avoided unnecessary recursive calls?

Idea. Use existing runs in the data and only sort runs!

Run 1 Run 2 Run 3 12 13 15 16 5 ->(+ 6 - 47 (+ C -) **Merge order matters!** Mergin Subarrays of length m, n Johns time @(mfn) ~ Z(m+n) 2+3 first & constant 1+2 first: Z(b+c) + Z(a+b+c) = Z(atb) Z (a+26+2c) + Z(a+b+c) = Z(Za+Zb+c)

20 / 26

Merge Trees and PowerSort

Overall Strategy

- MERGESORT but:
 - · don't sort runs that are already sorted
 - only split along run boundaries
- Remaining design choice: In what *order* should we perform the MERGE operations?

Merge Trees and PowerSort

Overall Strategy

- MERGESORT but:
 - don't sort runs that are already sorted
 - only split along run boundaries
- Remaining design choice: In what *order* should we perform the MERGE operations?
 - optimal merge trees are possible, but too costly to find
 - use good **approximation** to optimal merge tree:
 - \Rightarrow **PowerSort** algorithm used by Python
 - developed by Sebastian Wild (my predecessor for COMP526) and others
 - open competition for improvements!

Divide & Conquer

We've seen how effective the Divide & Conquer strategy is for sorting

... what about Divide & Conquer other problems?

So Far

We've seen how effective the Divide & Conquer strategy is for sorting

... what about Divide & Conquer other problems?

Problem 1. k-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

So Far

We've seen how effective the Divide & Conquer strategy is for **sorting**

- ... what about Divide & Conquer other problems?
- Problem 1. k-Selection:
 - Given an array *a* of *n* numbers, find the *k*th largest number

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than > *n*/2 times?

So Far

We've seen how effective the Divide & Conquer strategy is for **sorting**

- ... what about Divide & Conquer other problems?
- Problem 1. k-Selection:
 - Given an array *a* of *n* numbers, find the *k*th largest number

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than > *n*/2 times?

There are **WAY MORE** applications of Divide & Conquer as well!

Versatile general problem solving strategy

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number.

k-Selection

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- sort *a* in *O*(*n*log *n*) time
- return *a*[*k*]

Can we do better?

k-Selection

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- sort *a* in *O*(*n*log *n*) time
- return *a*[*k*]

Can we do better? Modify QuickSort!

- Choose pivot *p*
- Perform split
- only recurse on half that contains kth smallest value
 - this will be the half that contains index *k*

k-Selection

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- sort *a* in *O*(*n*log *n*) time
- return *a*[*k*]

Can we do better? Modify QuickSort!

- Choose pivot *p*
- Perform split
- only recurse on half that contains kth smallest value
 - this will be the half that contains index *k*

- 1: **procedure** QUICKSELECT(*a*, min, max, *k*)
- 2: **if** $\max \min \le 1$ **then**
- 3: return *a*[min]
- 4: **end if**
- 5: $p \leftarrow \text{SELECTPIVOT}(a, \min, \max)$
- 6: $j \leftarrow \text{SPLIT}(a, \min, \max, p)$
- 7: **if** j = k **then**
 - return *a*[*k*]
- 9: **else if** *j* < *k* **then**

QUICKSELECT $(a, j+1, \max, k)$

11: else

8:

10:

12:

QUICKSELECT(a, min, j - 1, k)

- 13: end if
- 14: end procedure

For Next Time

Questions to Consider

- 1. If we choose a pivot uniformly at random for QUICKSELECT, what is the procedure's expected running time?
- 2. Can we choose a pivot *deterministically* that gives this same running time?
- 3. How efficiently can we solve the majority problem?
 - Hint: if a value *v* is a majority, then it must be a majority on some half of the array.

Starting next week:

• Text Searching

Scratch Notes