

Lecture 09: Sorting III

COMP526: Efficient Algorithms

Updated: October 31, 2024

Will Rosenbaum

University of Liverpool

Announcements

- 1. Fourth Quiz, due Friday
	- *•* Similar format to before
	- *•* Covers (Balanced) Binary Search Trees (Lectures 6–7)
	- *•* Quiz is **closed resource**
		- *•* No books, notes, internet, etc.
		- *•* Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment Posted
	- *•* Due Wednesday, 13 November
- 3. Attendance Code:

695655

Meeting Goals

- *•* Discuss non-comparison based sorting
	- *•* RADIXSORT
	- *•* COUNTINGSORT
- *•* Beyond worst-case sorting
- *•* More Divide & Conquer algorithms

From Last Time

Sorting by Divide and Conquer:

- *•* MERGESORT: worst case *O*(*n*log*n*) running time
- QUICKSORT: worst case $O(n^2)$, expected time $O(n \log n)$

From Last Time

Sorting by Divide and Conquer:

- *•* MERGESORT: worst case *O*(*n*log*n*) running time
- OUICKSORT: worst case $O(n^2)$, expected time $O(n \log n)$

Lower Bounds:

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ *comparisons to sort arrays of length n in the worst case.*

From Last Time

Sorting by Divide and Conquer:

- *•* MERGESORT: worst case *O*(*n*log*n*) running time
- OUICKSORT: worst case $O(n^2)$, expected time $O(n \log n)$

Lower Bounds:

Theorem

 $Any \ comparison-based \ sorting algorithm \ requires \Omega(n\log n)$ *comparisons to sort arrays of length n in the worst case.* quires $\Omega(r)$
worst cas

So we're, like, done with sorting right?

Non Comparison-Based Sorting

Non Comparison-Based Sorting

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ *comparisons to sort arrays of length n in the worst case.*

Recall:

- *•* A **comparison-base sorting algorithm** is any algorithm whose decisions are made only made based on the outcomes of comparison operations
- *•* The actual numerical values are not used, only relative order
- *•* For example, adding the same fixed value to each element of the array has *no effect* on the operations performed by the algorithm

\n**son-based** sorting algorithm requires
$$
\Omega(n \log n)
$$
 to sort arrays of length n in the worst case.\n

\n\n**arison-base sorting algorithm** is any algorithm whose\n

\n\n**as** are made only made based on the outcomes of\n

\n\n**is** on operations\n

\n\n**is** an numerical values are not used, only relative order\n

\n\n**is** no effect on the operations performed by the algorithm\n

\n\n**is** no effect on the operations performed by the algorithm\n

\n\n**is** a result of the problem\n

\n\

Non Comparison-Based Sorting

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ *comparisons to sort arrays of length n in the worst case.*

Recall:

- *•* A **comparison-base sorting algorithm** is any algorithm whose decisions are made only made based on the outcomes of comparison operations
- *•* The actual numerical values are not used, only relative order
- *•* For example, adding the same fixed value to each element of the array has *no effect* on the operations performed by the algorithm

Questions.

- *•* What would **non**-comparison based algorithm look like? **Probably**
• What would **non**-comparison based algorithm look like?
• How efficient could such an algorithm be?
• 2(n) alway
-

Warmup: Sorting Binary Values

Question. How efficiently can we sort a *binary array?*

a = [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1]

Warmup: Sorting Binary Values

Question. How efficiently can we sort a *binary array?*

a = [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1]

Method 1. Use the SPLIT method from QUICKSORT with pivot 0. 1,0,0,0,
LIT method
2)
RADIXSOR

- This will take $\Theta(n)$ time! $\frac{1}{2}$ SPLI
 $\frac{1}{2}$ O(*n*)
on: R
- *•* **Generalization:** RADIXSORT

Warmup: Sorting Binary Values

Question. How efficiently can we sort a *binary array?*

a = [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1]

Method 1. Use the SPLIT method from QUICKSORT with pivot 0.

- This will take $\Theta(n)$ time!
- *•* **Generalization:** RADIXSORT

Method 2. Count the number of 0's and 1's in *a*, then write this many 0's and 1's in order.

- This will also take $\Theta(n)$ time!
- *•* **Generalization:** COUNTINGSORT

Recall. Every number can be represented in binary notation:
 $\frac{1-1_2}{2}$ **nary Representa**
 all. Every number can be

sented in binary notation:
 $\frac{1}{2} = 10_2$
 $3 = 11_2$
 $4 = 100_2$
 $5 = 101_2$
 \vdots
 formally:
 $b_k b_{k-1} \cdots b_1 b_0)_2 = \sum_{i=0}^k b_i 2^i$

re each $b_i \in \{0, 1\}$.
 prially:

- $1 = 1_2$
- $2 = 10₂$
- $3 = 112$
- $4 = 1002$
- $5 = 1012$
- *•* . . .

More formally:

$$
(b_k b_{k-1} \cdots b_1 b_0)_2 = \sum_{i=0}^k b_i 2^i
$$

where each $b_i \in \{0, 1\}$.

Pictorially: $10110₂ =$

Recall. Every number can be represented in binary notation:

- $1 = 12$
- $2 = 102$
- $3 = 112$
- $4 = 1002$
- $5 = 1012$
- *•* . . .

More formally:

$$
(b_k b_{k-1} \cdots b_1 b_0)_2 = \sum_{i=0}^k b_i 2^i
$$

where each $b_i \in \{0, 1\}$.

Pictorially: $10110₂ =$

Comparing binary values. To determine if *b < c*, perform *bit-wise* comparison.

- 1: **procedure** BITWISECOMPARE(*b*,*c*)
- 2: $i \leftarrow k$
3: **while**
- 3: **while** $i > 0$ **do**
4: **if** $b_i < c_i$ **th**
- 4: **if** $b_i < c_i$ **then**
5: **return** TRI
- 5: **return** TRUE
- 6: **else if** $b_i > c_i$ **then**
7: **return** EALSE 7: **return** FALSE
- 8: **end if**

$$
9: \qquad i \leftarrow i-1
$$

- 10: **end while**
- 11: **return** FALSE
- 12: **end procedure Numbers**

paring binary values. 1

mine if $b < c$, perform *b*

parison.

cocedure BITWISECOMPARE(

i-k

while $i > 0$ do

if $b_i < c_i$ then

return TRUE

else if $b_i > c_i$ then

return FALSE

end if
 $i \leftarrow i - 1$

end while

re

↓ $k + 1$

values

PollEverywhere

Which is the largest binary value? 1. 1100104001 + + 0 + + 12 2.1 100011001110111 3. | 1001 010141410111₂ 4. | 1001010110111100111₂ $\int_{\text{O}} \text{Cyl} \cdot \text{S} \cdot \text{F}$ if $b_i < c_i$ then
return TRU **Binary Representation o**

PollEverywhere

Which is the largest binary value?

1. Troppponential and the largest binary value?

2. Joseph Hot Hot Hot Been and the Contract of Been and the Contract of Been and the Contract

pollev.com/comp526

Comparing binary values. To determine if *b < c*, perform *bit-wise* comparison.

- 1: **procedure** BITWISECOMPARE(*b*,*c*)
- 2: $i \leftarrow k$
3: **while**
	- $\mathbf{while} \quad i > 0 \quad \mathbf{do}$
		- - 5: **return** TRUE
- 6: **else if** $b_i > c_i$ **then**
7: **return** FALSE
	- 7: **return** FALSE
- 8: **end if**
- 9: $i \leftarrow i-1$
10: **end while**
- end while
- 11: **return** FALSE
- 12: **end procedure**

Main Observation. We can compare values by incrementally reading bits.

- *•* The first bit on which *b* and *c* differ determines whether or not $h < c$
	- *•* Do not need to read the entire value unless $|b - c| \leq 1$.

Comparing binary values. To determine if *b < c*, perform *bit-wise* comparison.

- 1: **procedure** BITWISECOMPARE(*b*,*c*)
- 2: $i \leftarrow k$
3: **while**
- 3: **while** $i > 0$ **do**
4: **if** $b_i < c_i$ **th**
- 4: **if** $b_i < c_i$ **then**
5: **return** TRI
- 5: **return** TRUE
- 6: **else if** $b_i > c_i$ **then**

7: **return** FALSE
- 7: **return** FALSE
- 8: **end if**
- 9: $i \leftarrow i-1$
10: **end while**
- end while
- 11: **return** FALSE
- 12: **end procedure**

Main Observation. We can compare values by incrementally reading bits.

- *•* The first bit on which *b* and *c* differ determines whether or not $h < c$
	- *•* Do not need to read the entire value unless $|b - c|$ ≤ 1.

Radix Sort Idea. Sort values by incrementally reading bits.

- *•* Compare individual bits rather than entire values
- *•* Split numbers according to bit comparisons

Comparing binary values. To determine if *b < c*, perform *bit-wise* comparison.

- 1: **procedure** BITWISECOMPARE(*b*,*c*)
- 2: $i \leftarrow k$
3: **while**
- 3: **while** $i > 0$ **do**
4: **if** $b_i < c_i$ **th**
- 4: **if** $b_i < c_i$ **then**
5: **return** TRI
- 5: **return** TRUE
- 6: **else if** $b_i > c_i$ **then**

7: **return** FALSE
	- 7: **return** FALSE
- 8: **end if**
- 9: $i \leftarrow i-1$
10: **end while**
- end while
- 11: **return** FALSE
- 12: **end procedure**

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

erywhere

the running time of IT as a function of $x - min?$

pollev.com/comp526

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

Analysis of RADIXSORT (informal)

- *•* Consider each value of Consider each value of
 $b = B, B - 1,..., 0$ **b** $\begin{matrix} \sqrt{N} & 0 \\ 0 & \sqrt{N} \end{matrix}$
- All values $a[i][b]$ are read once in all calls at level *b* **is of RADIXSORT** (informal)

onsider each value of
 $= B, B-1,...,0$
 $\downarrow \downarrow \downarrow$

I values $a[i][b]$ are read once

all calls at level *b*

total running time on level

b is $\Theta(n)$
 \Rightarrow Total running time is
	- *•* total running time on level b is $\Theta(n)$
	- *=*) Total running time is

£(*Bn*).

- $\bigwedge^{B(n)}$ values
- bits per value
- 1: **procedure** RADIXSORT(*a*,*b*,min,max)
- 2: **if** $b < 0$ or min = max **then**

3: **return**

4: **end if**

- 5: $i \leftarrow \text{BITSPLIT}(a, \text{min}, \text{max}, b)$
6: RADIXSORT $(a, \text{min}, i, b-1)$
- 6: RADIXSORT $(a, \text{min}, i, b-1)$
7: RADIXSORT $(a, i+1, \text{max}, b)$
- $RADIXSORT(a, i+1, max, b-1)$
- 8: **end procedure**

Denote the *b*th bit of *a*[*i*] by *a*[*i*][*b*]

Analysis of RADIXSORT (informal)

• Consider each value of $b = B, B - 1, \ldots, 0$

£(*Bn*).

- *•* All values *a*[*i*][*b*] are read once in all calls at level *b* Example the burn of all planets of RADIXSORT (informal) 1:

isider each value of 2:
 $B, B-1, ..., 0$ 4:

values $a[i][b]$ are read once 5:

Il calls at level b 6:

total running time on level 7:

b is $\Theta(n)$ Total running time
	- *•* total running time on level b is $\Theta(n)$

Total running time is

1: **procedure** RADIXSORT(*a*,*b*,min,max)

- 2: **if** $b < 0$ or min = max **then**
3: **return**
- 3: **return**
- 4: **end if**
- 5: $i \leftarrow \text{BITSPLIT}(a, \text{min}, \text{max}, b)$
6: RADIXSORT $(a, \text{min}, i, b-1)$
- 6: RADIXSORT $(a, \text{min}, i, b-1)$
7: RADIXSORT $(a, i+1, \text{max}, b)$
- $RADIXSORT(a, i+1, max, b-1)$
- 8: **end procedure**

Question. Is the better or worse than £(*n*log*n*)? O

bin. Is the better or worse than
$$
\Theta
$$
 (along n)?

\nbeff-ef

\n \iff B < c log n\n \uparrow 32, 64

RadixSort Visualization

https://willrosenbaum.com/blog/2022/radix-sort/

CountingSort

A Simple Idea

Question. What if we already know the set of **all possible** values stored \int in a ? in *a*? the set of **a**
 $\sqrt{0, 1, ..., m}$
es *i* occurs i

- Suppose the possible values are $(0, 1, \ldots, m)$
- *•* Form an array *c* of counts
	- *• c*[*i*] stores the number of times *i* occurs in *a*. -

Example.

- **•** $a = [3, 0, 1, 2, 0, 1, 2, 1, 1, 1, 2, 0, 0, 3, 3, 1, 2, 0, 0, 0, 1, 0, 3]$
- $c = [8, 7, 4, 4]$

A Simple Idea

Question. What if we already know the set of **all possible** values stored in a^2 **imple Idea**
 tion. What if we already know the set of **all pos**

Suppose the possible values are 0, 1, ..., *m*

Form an array *c* of counts

• *c*[*i*] stores the number of times *i* occurs in *a*.
 1Ple.
 $a = [3, 0,$

- *•* Suppose the possible values are 0, 1,...,*m*
- *•* Form an array *c* of counts
	- *• c*[*i*] stores the number of times *i* occurs in *a*.

Example.

- \bullet *a* = [3, 0, 1, 2, 0, 1, 2, 1, 1, 1, 2, 0, 0, 3, 3, 1
- $c = [8, 7, 4, 4]$

Question. Given *c*, how can we sort *a*?

· 000000111111122223333

A Simple Idea

Question. What if we already know the set of **all possible** values stored in a^2

- *•* Suppose the possible values are 0, 1,...,*m*
- *•* Form an array *c* of counts
	- *• c*[*i*] stores the number of times *i* occurs in *a*.

Example.

- \bullet *a* = [3, 0, 1, 2, 0, 1, 2, 1, 1, 1, 2, 0, 0, 3, 3, 1, 2, 0, 0, 0, 1, 0, 3]
- $c = [8, 7, 4, 4]$

Question. Given *c*, how can we sort *a*?

• Add *c*[*i*] copies of *i* to *a*!

CountingSort

PollEverywhere

What is the running time of What is the running time of
COUNTINGSORT where *a* has size *n* and contains values from 0 to $m-1$?

1. $\Theta(nm)$

4. $\Theta(n + \log m)$

Length of .
O

2. £(*n*log*m*) $\left(\Theta(n+m) \right)$ tains values fr
 $\theta(nm)$
 $\theta(n\log m)$
 $\Theta(n+m)$

5. $\Theta(\log n + m)$

pollev.com/comp526

CountingSort

Sorting in the Real World

So far we've analyzed the running time of sorting on **worst-case** inputs

Question. Are "typical" inputs to sorting close to the worst case?

So far we've analyzed the running time of sorting on **worst-case** inputs

Question. Are "typical" inputs to sorting close to the worst case?

• What are worst-case inputs?

So far we've analyzed the running time of sorting on **worst-case** inputs

Question. Are "typical" inputs to sorting close to the worst case?

- *•* What are worst-case inputs?
	- in general, "worst-case" depends on the algorithm
- ...but our Ω(*n*log*n*) comparison lower bound can be extended to *random permutations* cal" inp
t-case in
"worst-c
Ω(*n*log*n*
ermutatie
	- \implies for any algorithm, sorting a random array requires $\Omega(n \log n)$ comparisons in expectation

So far we've analyzed the running time of sorting on **worst-case** inputs

Question. Are "typical" inputs to sorting close to the worst case?

- *•* What are worst-case inputs?
	- in general, "worst-case" depends on the algorithm
	- ... but our $\Omega(n \log n)$ comparison lower bound can be extended to *random permutations*
	- \implies for any algorithm, sorting a random array requires $\Omega(n \log n)$ comparisons in expectation
- *•* Are typical inputs to sorting algorithms similar to (uniformly) random arrays **in the real world**?
	- *•* if they are, there isn't much we can do (lower bound)
	- *•* but if they aren't, can our sorting algorithm **adapt** to the input and **exploit** its structure?

Partially Sorted Inputs

Often, **real world** data to be sorted contains **runs** of increasing values

- *•* Even random arrays will have *some* increasing sub-strings
- Only a decreasing array has all runs of size 1

Partially Sorted Inputs

Often, **real world** data to be sorted contains **runs** of increasing values

- *•* Even random arrays will have *some* increasing sub-strings
- Only a decreasing array has all runs of size 1

Question. Can we exploit existing increasing runs in our data to sort it faster?

Partially Sorted Inputs

Often, **real world** data to be sorted contains **runs** of increasing values

- *•* Even random arrays will have *some* increasing sub-strings
- Only a decreasing array has all runs of size 1

Question. Can we exploit existing increasing runs in our data to sort it faster?

PollEverywhere

Which sorting algorithm exploits the idea that combining sorted arrays is easier than sorting from scratch?

- 1. HEAPSORT 3. QUICKSORT
- 2. MERGESORT
-

4. RADIXSORT pollev.com/comp526

MergeSort Behaving Badly

A nice input?

MergeSort Behaving Badly

MergeSort merges

Question. Which merges were **unnecessary**?

MergeSort with a Simple Check

A Simple Improvement

- *•* Only MERGE if *a*[*i*...*k*] is not already sorted
- Since $a[i...j]$ and $a[j+1...k]$ are both sorted, this check can be done in *O*(1) time.
	- *•* How?

MergeSort with a Simple Check

A Simple Improvement

- *•* Only MERGE if *a*[*i*...*k*] is not already sorted
- Since $a[i...j]$ and $a[j+1...k]$ are both sorted, this check can be done in *O*(1) time.
	- *•* How?

MergeSort with a Simple Check

A Simple Improvement

- *•* Only MERGE if *a*[*i*...*k*] is not already sorted
- Since $a[i...j]$ and $a[j+1...k]$ are both sorted, this check can be done in *O*(1) time.

• How?

• MERGESORT*+* still has *best* $case$ running time $\Theta(n\sqrt{\log n})$ *•* why?

How could we improve MERGESORT so that **best case** running time is *o*(*n*log*n*)?

MergeSort Merges

Question. Which **recursive calls** were unnecessary?

MergeSort Merges

Question. How could we have avoided unnecessary recursive calls?

Idea. Use existing runs in the data and only sort **runs**!

Run 1 Run 2 Run 3

20 / 26

 Merge order matters! ^a - >1 ⁺ ^b ⁺¹ +c - Mergin subarrays of lenghh min takes time : \$(mtn) - Elmant ⁺ ³ first ⁺ 2 first : z(bt) ⁺ z(a+b+c) ⁼ z(a + z(a +b) +b ⁺ c) ⁼↳z(z+2b ⁺ c) - ELab

Merge Trees and PowerSort

Overall Strategy

- *•* MERGESORT but:
	- *•* don't sort runs that are already sorted
	- *•* only split along run boundaries
- *•* Remaining design choice: In what *order* should we perform the MERGE operations?

Merge Trees and PowerSort

Overall Strategy

- *•* MERGESORT but:
	- *•* don't sort runs that are already sorted
	- only split along run boundaries
- *•* Remaining design choice: In what *order* should we perform the MERGE operations? **CONCRET SANCE 1988**

Figure 1 and **POWE**

Figure 1 and the set of t
	- *•* optimal merge trees are possible, but too costly to find
	- *•* use good **approximation** to optimal merge tree:
		- \Rightarrow **PowerSort** algorithm used by Python
			- *•* developed by Sebastian Wild (my predecessor for COMP526) and others
			- *•* **open competition for improvements!**

Divide & Conquer

We've seen how effective the Divide & Conquer strategy is for **sorting**

. . . what about Divide & Conquer **other problems**?

So Far

We've seen how effective the Divide & Conquer strategy is for **sorting**

. . . what about Divide & Conquer **other problems**?

Problem 1. *k*-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

So Far

We've seen how effective the Divide & Conquer strategy is for **sorting**

. . . what about Divide & Conquer **other problems**?

Problem 1. *k*-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than $>$ $n/2$ times?

So Far

We've seen how effective the Divide & Conquer strategy is for **sorting**

. . . what about Divide & Conquer **other problems**?

Problem 1. *k*-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than $>$ $n/2$ times?

There are **WAY MORE** applications of Divide & Conquer as well!

• Versatile general problem solving strategy

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number.

k-Selection

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- *•* sort *a* in *O*(*n*log*n*) time
- *•* return *a*[*k*]

Can we do better?

k-Selection

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- *•* sort *a* in *O*(*n*log*n*) time
- *•* return *a*[*k*]

Can we do better? Modify QuickSort!

- *•* Choose pivot *p*
- *•* Perform split
- *• only recurse on half that contains kth smallest value*
	- *•* this will be the half that contains index *k*

k-Selection

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number. **Simple solution.**

- *•* sort *a* in *O*(*n*log*n*) time
- *•* return *a*[*k*]

Can we do better? Modify QuickSort!

- *•* Choose pivot *p*
- *•* Perform split
- *• only recurse on half that contains kth smallest value*
	- *•* this will be the half that contains index *k*
- 1: **procedure** QUICKSELECT(*a*,min,max,*k*)
- 2: **if** max min ≤ 1 **then**
3: **return** a [min] 3: **return** *a*[min]
- 4: **end if**
- 5: $p \leftarrow$ SELECTPIVOT(*a*, min, max)
6: $i \leftarrow$ SPLIT(*a*, min, max, *n*)
- 6: $j \leftarrow \text{SPLIT}(a, \text{min}, \text{max}, p)$
7: **if** $j = k$ then
- 7: **if** $j = k$ **then**
8: **return** *a*
	- return $a[k]$
- 9: **else if** $j < k$ **then**
10: **OUICKSELEC**

10: QUICKSELECT $(a, j+1, \max, k)$
11: **else**

11: **else**

12: QUICKSELECT(*a*, min, $j-1$, *k*)
13: **end if**

- end if
- 14: **end procedure**

For Next Time

Questions to Consider

- 1. If we choose a pivot uniformly at random for QUICKSELECT, what is the procedure's expected running time?
- 2. Can we choose a pivot *deterministically* that gives this same running time?
- 3. How efficiently can we solve the majority problem?
	- *•* Hint: if a value *v* is a majority, then it must be a majority on some half of the array.

Starting next week:

• Text Searching

Scratch Notes