
Lecture 09: Sorting III
COMP526: Efficient Algorithms

Updated: October 31, 2024
Will Rosenbaum
University of Liverpool

1 / 26

695655

Announcements
1. Fourth Quiz, due Friday

• Similar format to before
• Covers (Balanced) Binary Search Trees (Lectures 6–7)
• Quiz is closed resource

• No books, notes, internet, etc.
• Do not discuss until after submission deadline (Friday night, after

midnight)

2. Programming Assignment Posted
• Due Wednesday, 13 November

3. Attendance Code:

2 / 26

695655

Meeting Goals
• Discuss non-comparison based sorting

• RADIXSORT
• COUNTINGSORT

• Beyond worst-case sorting

• More Divide & Conquer algorithms

3 / 26

From Last Time
Sorting by Divide and Conquer:

• MERGESORT: worst case O(n logn) running time

• QUICKSORT: worst case O(n
2), expected time O(n logn)

Lower Bounds:

Theorem
Any comparison-based sorting algorithm requires≠(n logn)
comparisons to sort arrays of length n in the worst case.

So we’re, like, done with sorting right?

4 / 26

From Last Time
Sorting by Divide and Conquer:

• MERGESORT: worst case O(n logn) running time

• QUICKSORT: worst case O(n
2), expected time O(n logn)

Lower Bounds:

Theorem
Any comparison-based sorting algorithm requires≠(n logn)
comparisons to sort arrays of length n in the worst case.

So we’re, like, done with sorting right?

4 / 26

From Last Time
Sorting by Divide and Conquer:

• MERGESORT: worst case O(n logn) running time

• QUICKSORT: worst case O(n
2), expected time O(n logn)

Lower Bounds:

Theorem
Any comparison-based sorting algorithm requires≠(n logn)
comparisons to sort arrays of length n in the worst case.

So we’re, like, done with sorting right?

4 / 26

-

Non
Comparison-
Based Sorting

Non Comparison-Based Sorting

Theorem
Any comparison-based sorting algorithm requires≠(n logn)
comparisons to sort arrays of length n in the worst case.

Recall:

• A comparison-base sorting algorithm is any algorithm whose
decisions are made only made based on the outcomes of
comparison operations

• The actual numerical values are not used, only relative order

• For example, adding the same fixed value to each element of the
array has no effect on the operations performed by the algorithm

Questions.

• What would non-comparison based algorithm look like?

• How efficient could such an algorithm be?

6 / 26

if atil < atj]-> one branch

else- another
branch

Non Comparison-Based Sorting

Theorem
Any comparison-based sorting algorithm requires≠(n logn)
comparisons to sort arrays of length n in the worst case.

Recall:

• A comparison-base sorting algorithm is any algorithm whose
decisions are made only made based on the outcomes of
comparison operations

• The actual numerical values are not used, only relative order

• For example, adding the same fixed value to each element of the
array has no effect on the operations performed by the algorithm

Questions.

• What would non-comparison based algorithm look like?

• How efficient could such an algorithm be?
6 / 26

jusa
->2(n) alw

Warmup: Sorting Binary Values
Question. How efficiently can we sort a binary array?

a = [1,0,1,1,0,0,0,1,1,1,0,1,0,1,0,1,1,0,1]

Method 1. Use the SPLIT method from QUICKSORT with pivot 0.

• This will take£(n) time!

• Generalization: RADIXSORT

Method 2. Count the number of 0’s and 1’s in a, then write this many
0’s and 1’s in order.

• This will also take£(n) time!

• Generalization: COUNTINGSORT

7 / 26

Warmup: Sorting Binary Values
Question. How efficiently can we sort a binary array?

a = [1,0,1,1,0,0,0,1,1,1,0,1,0,1,0,1,1,0,1]

Method 1. Use the SPLIT method from QUICKSORT with pivot 0.

• This will take£(n) time!

• Generalization: RADIXSORT

Method 2. Count the number of 0’s and 1’s in a, then write this many
0’s and 1’s in order.

• This will also take£(n) time!

• Generalization: COUNTINGSORT

7 / 26

*
=
-

pick p

↓

PKP

Warmup: Sorting Binary Values
Question. How efficiently can we sort a binary array?

a = [1,0,1,1,0,0,0,1,1,1,0,1,0,1,0,1,1,0,1]

Method 1. Use the SPLIT method from QUICKSORT with pivot 0.

• This will take£(n) time!

• Generalization: RADIXSORT

Method 2. Count the number of 0’s and 1’s in a, then write this many
0’s and 1’s in order.

• This will also take£(n) time!

• Generalization: COUNTINGSORT

7 / 26

Binary Representation of Numbers
Recall. Every number can be

represented in binary notation:
• 1 = 12

• 2 = 102

• 3 = 112

• 4 = 1002

• 5 = 1012

•
...

More formally:

(bkbk°1 · · ·b1b0)2 =
P

k

i=0 bi2i

where each bi 2 {0,1}.

Pictorially: 101102 =

Comparing binary values. To
determine if b < c, perform bit-wise

comparison.
1: procedure BITWISECOMPARE(b,c)
2: i √ k

3: while i > 0 do

4: if bi < ci then

5: return TRUE

6: else if bi > ci then

7: return FALSE

8: end if

9: i √ i°1
10: end while

11: return FALSE

12: end procedure

8 / 26

-

-

Binary Representation of Numbers
Recall. Every number can be

represented in binary notation:
• 1 = 12

• 2 = 102

• 3 = 112

• 4 = 1002

• 5 = 1012

•
...

More formally:

(bkbk°1 · · ·b1b0)2 =
P

k

i=0 bi2i

where each bi 2 {0,1}.

Pictorially: 101102 =

Comparing binary values. To
determine if b < c, perform bit-wise

comparison.
1: procedure BITWISECOMPARE(b,c)
2: i √ k

3: while i > 0 do

4: if bi < ci then

5: return TRUE

6: else if bi > ci then

7: return FALSE

8: end if

9: i √ i°1
10: end while

11: return FALSE

12: end procedure

8 / 26

↓
k + 1 bit

values

r

Binary Representation of Numbers

PollEverywhere

Which is the largest binary value?

1. 1001010011101112

2. 1000110011101112

3. 1001010111101112

4. 1001010111001112

pollev.com/comp526

Comparing binary values. To
determine if b < c, perform bit-wise

comparison.
1: procedure BITWISECOMPARE(b,c)
2: i √ k

3: while i > 0 do

4: if bi < ci then

5: return TRUE

6: else if bi > ci then

7: return FALSE

8: end if

9: i √ i°1
10: end while

11: return FALSE

12: end procedure

8 / 26

-U largest

Binary Representation of Numbers
Main Observation. We can
compare values by incrementally
reading bits.

• The first bit on which b and c

differ determines whether or
not b < c

• Do not need to read the
entire value unless
|b° c|∑ 1.

Comparing binary values. To
determine if b < c, perform bit-wise

comparison.
1: procedure BITWISECOMPARE(b,c)
2: i √ k

3: while i > 0 do

4: if bi < ci then

5: return TRUE

6: else if bi > ci then

7: return FALSE

8: end if

9: i √ i°1
10: end while

11: return FALSE

12: end procedure

8 / 26

Binary Representation of Numbers
Main Observation. We can
compare values by incrementally
reading bits.

• The first bit on which b and c

differ determines whether or
not b < c

• Do not need to read the
entire value unless
|b° c|∑ 1.

Radix Sort Idea. Sort values by
incrementally reading bits.

• Compare individual bits
rather than entire values

• Split numbers according to bit
comparisons

Comparing binary values. To
determine if b < c, perform bit-wise

comparison.
1: procedure BITWISECOMPARE(b,c)
2: i √ k

3: while i > 0 do

4: if bi < ci then

5: return TRUE

6: else if bi > ci then

7: return FALSE

8: end if

9: i √ i°1
10: end while

11: return FALSE

12: end procedure

8 / 26

Example: Sorting with Bit Comparison
Consider the array a = [5,18,11,28,9,20,10,0,8,12,15,16,4,26,3,25]

5 18 11 28 9 20 10 0 8 12 15 16 4 26 3 25

9 / 26

7
spHerding

to bit.

Example: Sorting with Bit Comparison
Consider the array a = [5,18,11,28,9,20,10,0,8,12,15,16,4,26,3,25]

5 3 11 4 9 15 10 0 8 12 20 16 28 26 18 25

9 / 26

- 94

-I
left right

Example: Sorting with Bit Comparison
Consider the array a = [5,18,11,28,9,20,10,0,8,12,15,16,4,26,3,25]

5 3 0 4 15 9 10 11 8 12 20 16 18 26 28 25

9 / 26

do

Example: Sorting with Bit Comparison
Consider the array a = [5,18,11,28,9,20,10,0,8,12,15,16,4,26,3,25]

0 3 4 5 8 9 10 11 12 15 16 18 20 25 26 28

9 / 26

-
↓

RadixSort in (Pseduo)Code
Denote the bth bit of a[i] by a[i][b]

1: procedure BITSPLIT(a,min,max,b)
2: i √ min, j √ max
3: while i < j do

4: while a[i][b] = 0 and i < max do

5: i √ i+1
6: end while

7: while a[j][b] = 1 and j > min do

8: j √ j°1
9: end while

10: if i = max or j = min then

11: return i or j

12: end if

13: SWAP(a, i, , j)
14: i √ i+1, j √ j+1
15: end while

16: return i°1
17: end procedure

10 / 26

T
until until

Of place of placeI
entire

find out find out

C bit) Co bit)

- swap

values.

RadixSort in (Pseduo)Code
Denote the bth bit of a[i] by a[i][b]

1: procedure BITSPLIT(a,min,max,b)
2: i √ min, j √ max
3: while i < j do

4: while a[i][b] = 0 and i < max do

5: i √ i+1
6: end while

7: while a[j][b] = 1 and j > min do

8: j √ j°1
9: end while

10: if i = max or j = min then

11: return i or j

12: end if

13: SWAP(a, i, , j)
14: i √ i+1, j √ j+1
15: end while

16: return i°1
17: end procedure

PollEverywhere

What is the running time of
BITSPLIT as a function of
n = max°min?

pollev.com/comp526

10 / 26

W

&
-

I -I
W

-

-

I -

O(n) total ops performed

RadixSort in (Pseduo)Code
Denote the bth bit of a[i] by a[i][b]

1: procedure BITSPLIT(a,min,max,b)
2: i √ min, j √ max
3: while i < j do

4: while a[i][b] = 0 and i < max do

5: i √ i+1
6: end while

7: while a[j][b] = 1 and j > min do

8: j √ j°1
9: end while

10: if i = max or j = min then

11: return i or j

12: end if

13: SWAP(a, i, , j)
14: i √ i+1, j √ j+1
15: end while

16: return i°1
17: end procedure

1: procedure RADIXSORT(a,b,min,max)
2: if b < 0 or min = max then

3: return

4: end if

5: i √ BITSPLIT(a,min,max,b)
6: RADIXSORT(a,min, i,b°1)
7: RADIXSORT(a, i+1,max,b°1)
8: end procedure

10 / 26

O

G
B-bit values

Radix Sort (a ,B,
0
,
n-1)

7) RadixSort (a,

RadixSort in (Pseduo)Code
Denote the bth bit of a[i] by a[i][b]

Analysis of RADIXSORT (informal)

• Consider each value of
b = B,B°1, . . . ,0

• All values a[i][b] are read once
in all calls at level b

• total running time on level
b is£(n)

=) Total running time is
£(Bn).

1: procedure RADIXSORT(a,b,min,max)
2: if b < 0 or min = max then

3: return

4: end if

5: i √ BITSPLIT(a,min,max,b)
6: RADIXSORT(a,min, i,b°1)
7: RADIXSORT(a, i+1,max,b°1)
8: end procedure

10 / 26

-bithbit

En

↑* values
bits
per value

RadixSort in (Pseduo)Code
Denote the bth bit of a[i] by a[i][b]

Analysis of RADIXSORT (informal)

• Consider each value of
b = B,B°1, . . . ,0

• All values a[i][b] are read once
in all calls at level b

• total running time on level
b is£(n)

=) Total running time is
£(Bn).

1: procedure RADIXSORT(a,b,min,max)
2: if b < 0 or min = max then

3: return

4: end if

5: i √ BITSPLIT(a,min,max,b)
6: RADIXSORT(a,min, i,b°1)
7: RADIXSORT(a, i+1,max,b°1)
8: end procedure

Question. Is the better or worse than£(n logn)?

10 / 26

m
O

better ED B logn
& 32

,
64

RadixSort Visualization
https://willrosenbaum.com/blog/2022/radix-sort/

11 / 26

CountingSort

A Simple Idea
Question. What if we already know the set of all possible values stored
in a?

• Suppose the possible values are 0,1, . . . ,m

• Form an array c of counts
• c[i] stores the number of times i occurs in a.

Example.

• a = [3,0,1,2,0,1,2,1,1,1,2,0,0,3,3,1,2,0,0,0,1,0,3]

• c = [8,7,4,4]

Question. Given c, how can we sort a?

• Add c[i] copies of i to a!

13 / 26

[7
I

-

00 00 000 O

8

A Simple Idea
Question. What if we already know the set of all possible values stored
in a?

• Suppose the possible values are 0,1, . . . ,m

• Form an array c of counts
• c[i] stores the number of times i occurs in a.

Example.

• a = [3,0,1,2,0,1,2,1,1,1,2,0,0,3,3,1,2,0,0,0,1,0,3]

• c = [8,7,4,4]

Question. Given c, how can we sort a?

• Add c[i] copies of i to a!

13 / 26

-

·
000000111111122223333

A Simple Idea
Question. What if we already know the set of all possible values stored
in a?

• Suppose the possible values are 0,1, . . . ,m

• Form an array c of counts
• c[i] stores the number of times i occurs in a.

Example.

• a = [3,0,1,2,0,1,2,1,1,1,2,0,0,3,3,1,2,0,0,0,1,0,3]

• c = [8,7,4,4]

Question. Given c, how can we sort a?

• Add c[i] copies of i to a!

13 / 26

CountingSort

1: procedure COUNTINGSORT(a,n,m)
2: c √ 0-array of length m

3: for i = 0,1, . . . ,n°1 do

4: c[a[i]] √ c[a[i]]+1
5: end for

6: i √ 0
7: for j = 0,1, . . . ,m do

8: for k = 0,1, . . . ,c[j]°1 do

9: a[i] √ j

10: i √ i+1
11: end for

12: end for

13: end procedure

14 / 26

max value
(0 1.

-

,
m)

inementt
o-vane write

sorted valesa

1L

CountingSort

1: procedure COUNTINGSORT(a,n,m)
2: c √ 0-array of length m

3: for i = 0,1, . . . ,n°1 do

4: c[a[i]] √ c[a[i]]+1
5: end for

6: i √ 0
7: for j = 0,1, . . . ,m do

8: for k = 0,1, . . . ,c[j]°1 do

9: a[i] √ j

10: i √ i+1
11: end for

12: end for

13: end procedure

PollEverywhere
What is the running time of
COUNTINGSORT where a has size n and
contains values from 0 to m°1?

1. £(nm)

2. £(n logm)

3. £(n+m)

4. £(n+ logm)

5. £(logn+m)

pollev.com/comp526

14 / 26

Length of
o

6
O

CountingSort

1: procedure COUNTINGSORT(a,n,m)
2: c √ 0-array of length m

3: for i = 0,1, . . . ,n°1 do

4: c[a[i]] √ c[a[i]]+1
5: end for

6: i √ 0
7: for j = 0,1, . . . ,m do

8: for k = 0,1, . . . ,c[j]°1 do

9: a[i] √ j

10: i √ i+1
11: end for

12: end for

13: end procedure

Analysis:

14 / 26

=(m) . note : better

Wain) - than n log n

so long as
-

#i) ~MoEmi

+n

=m +n)

Sorting in the
Real World

Real-World Sorting?
So far we’ve analyzed the running time of sorting on worst-case inputs

Question. Are “typical” inputs to sorting close to the worst case?

• What are worst-case inputs?
• in general, “worst-case” depends on the algorithm
• . . . but our≠(n logn) comparison lower bound can be extended to

random permutations

• =) for any algorithm, sorting a random array requires≠(n logn)
comparisons in expectation

• Are typical inputs to sorting algorithms similar to (uniformly)
random arrays in the real world?

• if they are, there isn’t much we can do (lower bound)
• but if they aren’t, can our sorting algorithm adapt to the input and

exploit its structure?

16 / 26

Real-World Sorting?
So far we’ve analyzed the running time of sorting on worst-case inputs

Question. Are “typical” inputs to sorting close to the worst case?
• What are worst-case inputs?

• in general, “worst-case” depends on the algorithm
• . . . but our≠(n logn) comparison lower bound can be extended to

random permutations

• =) for any algorithm, sorting a random array requires≠(n logn)
comparisons in expectation

• Are typical inputs to sorting algorithms similar to (uniformly)
random arrays in the real world?

• if they are, there isn’t much we can do (lower bound)
• but if they aren’t, can our sorting algorithm adapt to the input and

exploit its structure?

16 / 26

Real-World Sorting?
So far we’ve analyzed the running time of sorting on worst-case inputs

Question. Are “typical” inputs to sorting close to the worst case?
• What are worst-case inputs?

• in general, “worst-case” depends on the algorithm
• . . . but our≠(n logn) comparison lower bound can be extended to

random permutations

• =) for any algorithm, sorting a random array requires≠(n logn)
comparisons in expectation

• Are typical inputs to sorting algorithms similar to (uniformly)
random arrays in the real world?

• if they are, there isn’t much we can do (lower bound)
• but if they aren’t, can our sorting algorithm adapt to the input and

exploit its structure?

16 / 26

-

Real-World Sorting?
So far we’ve analyzed the running time of sorting on worst-case inputs

Question. Are “typical” inputs to sorting close to the worst case?
• What are worst-case inputs?

• in general, “worst-case” depends on the algorithm
• . . . but our≠(n logn) comparison lower bound can be extended to

random permutations

• =) for any algorithm, sorting a random array requires≠(n logn)
comparisons in expectation

• Are typical inputs to sorting algorithms similar to (uniformly)
random arrays in the real world?

• if they are, there isn’t much we can do (lower bound)
• but if they aren’t, can our sorting algorithm adapt to the input and

exploit its structure?

16 / 26

Partially Sorted Inputs
Often, real world data to be sorted contains runs of increasing values

• Even random arrays will have some increasing sub-strings

• Only a decreasing array has all runs of size 1

Question. Can we exploit existing increasing runs in our data to sort it
faster?

PollEverywhere

Which sorting algorithm exploits the idea
that combining sorted arrays is easier
than sorting from scratch?

1. HEAPSORT

2. MERGESORT

3. QUICKSORT

4. RADIXSORT pollev.com/comp526

17 / 26

index

Partially Sorted Inputs
Often, real world data to be sorted contains runs of increasing values

• Even random arrays will have some increasing sub-strings

• Only a decreasing array has all runs of size 1

Question. Can we exploit existing increasing runs in our data to sort it
faster?

PollEverywhere

Which sorting algorithm exploits the idea
that combining sorted arrays is easier
than sorting from scratch?

1. HEAPSORT

2. MERGESORT

3. QUICKSORT

4. RADIXSORT pollev.com/comp526

17 / 26

Partially Sorted Inputs
Often, real world data to be sorted contains runs of increasing values

• Even random arrays will have some increasing sub-strings

• Only a decreasing array has all runs of size 1

Question. Can we exploit existing increasing runs in our data to sort it
faster?

PollEverywhere

Which sorting algorithm exploits the idea
that combining sorted arrays is easier
than sorting from scratch?

1. HEAPSORT

2. MERGESORT

3. QUICKSORT

4. RADIXSORT pollev.com/comp526

17 / 26

MergeSort Behaving Badly
A nice input?

0

4

1

6

2

7

3

9

4

11

5

12

6

13

7

15

8

16

9

2

10

5

11

10

12

1

13

3

14

8

15

14

18 / 26

L

MergeSort Behaving Badly
MergeSort merges

0

4

1

6

2

7

3

9

4

11

5

12

6

13

7

15

8

16

9

2

10

5

11

10

12

1

13

3

14

8

15

14

Question. Which merges were unnecessary?
18 / 26

&

Initial call

LeftY Righ

X

x x
114

-

MergeSort with a Simple Check
A Simple Improvement

• Only MERGE if a[i . . .k] is not
already sorted

• Since a[i . . . j] and a[j+1. . .k]
are both sorted, this check can
be done in O(1) time.

• How?

• MERGESORT+ still has best

case running time£(n logn)
• why?

How could we improve
MERGESORT so that best case

running time is o(n logn)?

1: procedure MERGESORT(a, i,k)
2: if i < k then

3: j √b(i+k)/2c
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b √ COPY(a, i, j)
7: c √ COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure

19 / 26

·

-

ati ...jatj ... k] W
#

·

witIf aLj]< aFitI] don'tned

MergeSort with a Simple Check
A Simple Improvement

• Only MERGE if a[i . . .k] is not
already sorted

• Since a[i . . . j] and a[j+1. . .k]
are both sorted, this check can
be done in O(1) time.

• How?

• MERGESORT+ still has best

case running time£(n logn)
• why?

How could we improve
MERGESORT so that best case

running time is o(n logn)?

1: procedure MERGESORT+(a, i,k)
2: if i < k then

3: j √b(i+k)/2c
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: . check if already sorted
7: if a[j] ∑ a[j+1] then

8: return

9: end if

10: b √ COPY(a, i, j)
11: c √ COPY(a, j+1,k)
12: MERGE(b,c,a, i)
13: end if

14: end procedure

19 / 26

MergeSort with a Simple Check
A Simple Improvement

• Only MERGE if a[i . . .k] is not
already sorted

• Since a[i . . . j] and a[j+1. . .k]
are both sorted, this check can
be done in O(1) time.

• How?

• MERGESORT+ still has best

case running time£(n logn)
• why?

How could we improve
MERGESORT so that best case

running time is o(n logn)?

1: procedure MERGESORT+(a, i,k)
2: if i < k then

3: j √b(i+k)/2c
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: . check if already sorted
7: if a[j] ∑ a[j+1] then

8: return

9: end if

10: b √ COPY(a, i, j)
11: c √ COPY(a, j+1,k)
12: MERGE(b,c,a, i)
13: end if

14: end procedure

19 / 26

[

F+
-

Further MergeSort Improvements
MergeSort Merges

0

4

1

6

2

7

3

9

4

11

5

12

6

13

7

15

8

16

9

2

10

5

11

10

12

1

13

3

14

8

15

14

Run 1 Run 2 Run 3

Question. Which recursive calls were unnecessary?
20 / 26

D

Further MergeSort Improvements
MergeSort Merges

0

4

1

6

2

7

3

9

4

11

5

12

6

13

7

15

8

16

9

2

10

5

11

10

12

1

13

3

14

8

15

14

Run 1 Run 2 Run 3

Question. How could we have avoided unnecessary recursive calls?
20 / 26

Further MergeSort Improvements
Existing Runs

0

4

1

6

2

7

3

9

4

11

5

12

6

13

7

15

8

16

9

2

10

5

11

10

12

1

13

3

14

8

15

14

Run 1 Run 2 Run 3

Idea. Use existing runs in the data and only sort runs!

20 / 26

-

Further MergeSort Improvements

0

4

1

6

2

7

3

9

4

11

5

12

6

13

7

15

8

16

9

2

10

5

11

10

12

1

13

3

14

8

15

14

Run 1 Run 2 Run 3

PollEverywhere

Which merge would it be more efficient to
perform first?

1. 1 and 2 first
2. 2 and 3 first

3. no (significant)
difference

pollev.com/comp526

20 / 26

1-

W
-

Further MergeSort Improvements

0

4

1

6

2

7

3

9

4

11

5

12

6

13

7

15

8

16

9

2

10

5

11

10

12

1

13

3

14

8

15

14

Run 1 Run 2 Run 3

Merge order matters!

20 / 26

1 a
->1 + b +1 +c - 1

Mergin subarrays of lenghh min

takes time : $(mtn) - Elmant
2+ 3 first

1 + 2 first :
z(bt) + z(a+b+c) =

z(a+b) ↳+ z(a +b + c) = z(z +2b + c) - ELab

Merge Trees and PowerSort
Overall Strategy

• MERGESORT but:
• don’t sort runs that are already sorted
• only split along run boundaries

• Remaining design choice: In what order should we perform the
MERGE operations?

• optimal merge trees are possible, but too costly to find
• use good approximation to optimal merge tree:
=) PowerSort algorithm used by Python

• developed by Sebastian Wild (my predecessor for COMP526) and
others

• open competition for improvements!

21 / 26

↑
11 =xx

Merge Trees and PowerSort
Overall Strategy

• MERGESORT but:
• don’t sort runs that are already sorted
• only split along run boundaries

• Remaining design choice: In what order should we perform the
MERGE operations?

• optimal merge trees are possible, but too costly to find
• use good approximation to optimal merge tree:
=) PowerSort algorithm used by Python

• developed by Sebastian Wild (my predecessor for COMP526) and
others

• open competition for improvements!

21 / 26

-

Divide &
Conquer

So Far
We’ve seen how effective the Divide & Conquer strategy is for sorting

. . . what about Divide & Conquer other problems?

Problem 1. k-Selection:

• Given an array a of n numbers, find the kth largest number

Problem 2. Majority:

• Given an array a of n items, is there an item that is repeated more
than > n/2 times?

There are WAY MORE applications of Divide & Conquer as well!

• Versatile general problem solving strategy

23 / 26

So Far
We’ve seen how effective the Divide & Conquer strategy is for sorting

. . . what about Divide & Conquer other problems?

Problem 1. k-Selection:

• Given an array a of n numbers, find the kth largest number

Problem 2. Majority:

• Given an array a of n items, is there an item that is repeated more
than > n/2 times?

There are WAY MORE applications of Divide & Conquer as well!

• Versatile general problem solving strategy

23 / 26

So Far
We’ve seen how effective the Divide & Conquer strategy is for sorting

. . . what about Divide & Conquer other problems?

Problem 1. k-Selection:

• Given an array a of n numbers, find the kth largest number

Problem 2. Majority:

• Given an array a of n items, is there an item that is repeated more
than > n/2 times?

There are WAY MORE applications of Divide & Conquer as well!

• Versatile general problem solving strategy

23 / 26

So Far
We’ve seen how effective the Divide & Conquer strategy is for sorting

. . . what about Divide & Conquer other problems?

Problem 1. k-Selection:

• Given an array a of n numbers, find the kth largest number

Problem 2. Majority:

• Given an array a of n items, is there an item that is repeated more
than > n/2 times?

There are WAY MORE applications of Divide & Conquer as well!

• Versatile general problem solving strategy

23 / 26

k-Selection
Problem. Given an array a of n numbers, find the kth smallest number.

Simple solution.

• sort a in O(n logn) time

• return a[k]

Can we do better?

Modify QuickSort!

• Choose pivot p

• Perform split
• only recurse on half that

contains kth smallest value

• this will be the half that
contains index k

1: procedure

QUICKSELECT(a,min,max,k)
2: if max°min ∑ 1 then

3: return a[min]
4: end if

5: p √ SELECTPIVOT(a,min,max)
6: j √ SPLIT(a,min,max,p)
7: if j = k then

8: return a[k]
9: else if j < k then

10: QUICKSELECT(a, j+1,max,k)
11: else

12: QUICKSELECT(a,min, j°1,k)
13: end if

14: end procedure

24 / 26

k-Selection
Problem. Given an array a of n numbers, find the kth smallest number.
Simple solution.

• sort a in O(n logn) time

• return a[k]

Can we do better?

Modify QuickSort!

• Choose pivot p

• Perform split
• only recurse on half that

contains kth smallest value

• this will be the half that
contains index k

1: procedure

QUICKSELECT(a,min,max,k)
2: if max°min ∑ 1 then

3: return a[min]
4: end if

5: p √ SELECTPIVOT(a,min,max)
6: j √ SPLIT(a,min,max,p)
7: if j = k then

8: return a[k]
9: else if j < k then

10: QUICKSELECT(a, j+1,max,k)
11: else

12: QUICKSELECT(a,min, j°1,k)
13: end if

14: end procedure

24 / 26

k-Selection
Problem. Given an array a of n numbers, find the kth smallest number.
Simple solution.

• sort a in O(n logn) time

• return a[k]

Can we do better?

Modify QuickSort!

• Choose pivot p

• Perform split
• only recurse on half that

contains kth smallest value

• this will be the half that
contains index k

1: procedure

QUICKSELECT(a,min,max,k)
2: if max°min ∑ 1 then

3: return a[min]
4: end if

5: p √ SELECTPIVOT(a,min,max)
6: j √ SPLIT(a,min,max,p)
7: if j = k then

8: return a[k]
9: else if j < k then

10: QUICKSELECT(a, j+1,max,k)
11: else

12: QUICKSELECT(a,min, j°1,k)
13: end if

14: end procedure

24 / 26

k-Selection
Problem. Given an array a of n numbers, find the kth smallest number.
Simple solution.

• sort a in O(n logn) time

• return a[k]

Can we do better?

Modify QuickSort!

• Choose pivot p

• Perform split
• only recurse on half that

contains kth smallest value

• this will be the half that
contains index k

1: procedure

QUICKSELECT(a,min,max,k)
2: if max°min ∑ 1 then

3: return a[min]
4: end if

5: p √ SELECTPIVOT(a,min,max)
6: j √ SPLIT(a,min,max,p)
7: if j = k then

8: return a[k]
9: else if j < k then

10: QUICKSELECT(a, j+1,max,k)
11: else

12: QUICKSELECT(a,min, j°1,k)
13: end if

14: end procedure

24 / 26

For Next Time
Questions to Consider

1. If we choose a pivot uniformly at random for QUICKSELECT, what
is the procedure’s expected running time?

2. Can we choose a pivot deterministically that gives this same
running time?

3. How efficiently can we solve the majority problem?
• Hint: if a value v is a majority, then it must be a majority on some

half of the array.

Starting next week:

• Text Searching

25 / 26

Scratch Notes

26 / 26

