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Announcements
1. Fourth Quiz, due Friday

• Similar format to before
• Covers (Balanced) Binary Search Trees (Lectures 6–7)
• Quiz is closed resource

• No books, notes, internet, etc.
• Do not discuss until after submission deadline (Friday night, after

midnight)

2. Programming Assignment (Draft) Posted
• Due Wednesday, 13 November

3. Attendance Code:
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Meeting Goals
• Discuss Divide and Conquer approaches to sorting

• MERGESORT

• QUICKSORT

• Demonstrate lower bounds for comparison-based sorting
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From Last Time
We recalled the Sorting Task:

7 1 2 5 3 4 8 6 7−→ 1 2 3 4 5 6 7 8

We discussed four sorting algorithms:

1. SELECTIONSORT: find the (next) smallest element and put it in
place

2. BUBBLESORT: “pull” the largest values toward the end of the array

3. INSERTIONSORT: sort prefixes of the array by inserting the “next”
element into sorted place

4. HEAPSORT: make a (max) heap, then repeated call REMOVEMAX,
placing elements at the end of the array
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Sorting by Divide
& Conquer



The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

1. Break the input into smaller instances of the task

2. Solve the smaller instances
• this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting

MERGESORT: Divide by index

• divide array into left and right
halves

• recursively sort halves

• merge halves

QUICKSORT: Divide by value

• pick a pivot value p
• split array according to p

• ≤ p on left, > p on right

• recursively sort sub-arrays
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Merging Sorted Arrays

Question

Suppose we are given two sorted arrays, a and b. How can we merge
them into a single sorted array that contains all the values from both
arrays?
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Merging Code
Merging sorted arrays a (size m)
and b (size n) into array c starting
at index s

PollEverywhere

What is the running time of
MERGE?

1. Θ(m+n)

2. Θ(m ·n)

3. Θ(log(m+n))

4. Θ(logmn)

pollev.com/comp526

1: procedure MERGE(a,b,c,s,m,n) ▷

Merge arrays a and b into array c
starting at index s. a has size m and b
has size n

2: i, j ← 0, k ← s
3: while k < s+m+n do
4: if j = n or a[i] < b[j] then
5: c[k] ← a[i]
6: i ← i+1
7: else
8: c[k] ← b[j]
9: j ← j+1

10: end if
11: k ← k+1
12: end while
13: end procedure
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Sorting by Merging
MERGESORTStrategy:

• To sort a[i . . .k]:
• If i = k, then we’re done
• Otherwise split

(sub)interval in half
• Recursively sort halves
• Merge sorted halves

• copy values to new
arrays for this

1: procedure MERGESORT(a, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure
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Sorting by Merging

PollEverywhere

Consider an execution of
MERGESORT(a,0,3) where
a = [4,2,1,3]. How many total calls
to MERGESORT are executed
(including the initial call)?

pollev.com/comp526

1: procedure MERGESORT(a, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure
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Sorting by Merging
Tracing the Recursive Calls

1: procedure MERGESORT(a, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure
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A Larger Example
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1: procedure
MERGESORT(a, i,k)

2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure

tikz code courtesy of SebGlav on tex.stackexchange.com
10 / 30

https://tex.stackexchange.com/questions/592155/how-to-draw-a-merge-sort-algorithm-figure


MergeSort Analysis
Question. What is the running time of MERGESORT?

PollEverywhere

What is the running time of
MERGESORT?

1. Θ(n)

2. Θ(n logn)

3. Θ(n3/2)

4. Θ(n2)

pollev.com/comp526

1: procedure MERGESORT(a, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure
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Running Time of Recursive Functions
Question. How do we analyze the running time of recursively defined
functions?

General Approach. Write (and solve) a recursive formula for the
running time:

• Define T(n) to be the worst case running time of all instances of
size n

• Find a (recursive) relationship between T(n) and T(n′) with n′ < n

• Solve the recursive function for T .
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A Recursive Formula for MergeSort
General Approach. Write (and solve) a recursive formula for the
running time

• Define T(n) to be the worst case
running time of all instances of size n

• How is T(n) related to T(n′) for
smaller values of n?

• T(n) = 2T(n/2)+ cn

• How do we solve this recursive
formula?

T(n) = 2T(n/2)+ cn

= 2(2T(n/4)+ c(n/2))+ cn

= 4T(n/4)+2cn

= ·· ·
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Inductive Argument

Proposition

Suppose that for all n, T(n) satisfies T(n) ≤ 2T(n/2)+ cn and
T(1) = O(1). Then T(n) = O(n logn).

Consequence

The running time of MERGESORT is O(n logn)

Also, MERGESORT performs reasonably well on large arrays in practice:

• Good locality of reference in MERGE operations

But MERGESORT operation requiresΘ(m) additional space

• MERGE operation copies values

14 / 30



Inductive Argument

Proposition

Suppose that for all n, T(n) satisfies T(n) ≤ 2T(n/2)+ cn and
T(1) = O(1). Then T(n) = O(n logn).

Proof.

We claim that for all k, T(n) = 2kT(n/2k)+kcn.

• The base case k = 1 is the hypothesis of the proposition.

• For the inductive step, apply inductive hypothesis along with the
base case for n′ = n/2k.

Now apply the claim for k = logn:

• T(n) ≤ 2lognT(n/2logn)+ (logn)cn = O(n logn)

Consequence

The running time of MERGESORT is O(n logn)

Also, MERGESORT performs reasonably well on large arrays in practice:

• Good locality of reference in MERGE operations
But MERGESORT operation requiresΘ(m) additional space

• MERGE operation copies values

14 / 30



Inductive Argument

Proposition

Suppose that for all n, T(n) satisfies T(n) ≤ 2T(n/2)+ cn and
T(1) = O(1). Then T(n) = O(n logn).

Proof.

We claim that for all k, T(n) = 2kT(n/2k)+kcn.

• The base case k = 1 is the hypothesis of the proposition.

• For the inductive step, apply inductive hypothesis along with the
base case for n′ = n/2k.

Now apply the claim for k = logn:

• T(n) ≤ 2lognT(n/2logn)+ (logn)cn = O(n logn)

Consequence

The running time of MERGESORT is O(n logn)

Also, MERGESORT performs reasonably well on large arrays in practice:

• Good locality of reference in MERGE operations
But MERGESORT operation requiresΘ(m) additional space

• MERGE operation copies values

14 / 30



Inductive Argument

Proposition

Suppose that for all n, T(n) satisfies T(n) ≤ 2T(n/2)+ cn and
T(1) = O(1). Then T(n) = O(n logn).

Consequence

The running time of MERGESORT is O(n logn)

Also, MERGESORT performs reasonably well on large arrays in practice:

• Good locality of reference in MERGE operations

But MERGESORT operation requiresΘ(m) additional space

• MERGE operation copies values

14 / 30



Inductive Argument

Proposition

Suppose that for all n, T(n) satisfies T(n) ≤ 2T(n/2)+ cn and
T(1) = O(1). Then T(n) = O(n logn).

Consequence

The running time of MERGESORT is O(n logn)

Also, MERGESORT performs reasonably well on large arrays in practice:

• Good locality of reference in MERGE operations

But MERGESORT operation requiresΘ(m) additional space

• MERGE operation copies values

14 / 30



Inductive Argument

Proposition

Suppose that for all n, T(n) satisfies T(n) ≤ 2T(n/2)+ cn and
T(1) = O(1). Then T(n) = O(n logn).

Consequence

The running time of MERGESORT is O(n logn)

Also, MERGESORT performs reasonably well on large arrays in practice:

• Good locality of reference in MERGE operations

But MERGESORT operation requiresΘ(m) additional space

• MERGE operation copies values

14 / 30



Visualizing the Argument
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tikz code courtesy of SebGlav on tex.stackexchange.com
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QuickSort



QuickSort: Dividing by Value

• The MERGESORT algorithm
divided arrays by index

• QUICKSORT divides arrays by
value

1. pick a pivot value p from
the array

2. split the array into
sub-arrays

• a[1 . . . j−1] stores values
≤ p

• a[j . . .n−1] stores values
> p

3. recursively sort a[1 . . . j−1]
and a[j . . .n−1]

1: procedure QUICKSORT(a,min,max)
2: p ← SELECTPIVOT(a,min,max)
3: j ← SPLIT(a,min,max,p)
4: QUICKSORT(a,min, j)
5: QUICKSORT(a, j+1,max)
6: end procedure
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Visualizing QuickSort
Select a pivot:

9 3 6 2 7 8 4 1 0 5

Split by pivot value:

9 3 6 2 7 8 4 1 0 5

4 3 0 2 1 5 8 7 6 9

Recursively sort left and right sides:

0 1 2 3 4 5 8 7 6 9

0 1 2 3 4 5 6 7 8 9
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Hoare’s Splitting Method

9 3 6 2 7 8 4 1 0 5

5 3 6 2 7 8 4 1 0 9

5 3 0 2 7 8 4 1 6 9

5 3 0 2 1 8 4 7 6 9

5 3 0 2 1 4 8 7 6 9
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Splitting in Pseudocode

1: procedure SPLIT(a,min,max,p)
2: i ← min
3: j ← max
4: while i < j do
5: while a[i] ≤ p do
6: i ← i+1
7: end while
8: while a[j] > p do
9: j ← j−1

10: end while
11: SWAP(a, i, j)
12: end while
13: swap p into index i−1
14: return i−1
15: end procedure
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Splitting in Pseudocode

PollEverywhere

What is the running time of
SPLIT(a,min,max,p)?

pollev.com/comp526
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Running time of QuickSort?

PollEverywhere

What is the worst-case
running time of
QUICKSORT?

pollev.com/comp526

1: procedure QUICKSORT(a,min,max)
2: p ← SELECTPIVOT(a,min,max)
3: j ← SPLIT(a,min,max,p)
4: QUICKSORT(a,min, j)
5: QUICKSORT(a, j+1,max)
6: end procedure
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Running time of QuickSort?
The Worst Case:

• the pivot is the largest
or smallest element in
a[min. . .max].

• Then one of the
recursive calls has size
max−min−1.

• The overall running
time is thenΩ(n2).

1: procedure QUICKSORT(a,min,max)
2: p ← SELECTPIVOT(a,min,max)
3: j ← SPLIT(a,min,max,p)
4: QUICKSORT(a,min, j)
5: QUICKSORT(a, j+1,max)
6: end procedure

No matter what:

• Each call to SPLIT sorts at least one
element (the pivot)

• Each call to QUICKSORT takes time
O(n)

• =⇒ Running time is O(n2)

So the overall running time isΘ(n2)
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Running time of QuickSort?

PollEverywhere

What is the best-case
running time of
QUICKSORT?

pollev.com/comp526

1: procedure QUICKSORT(a,min,max)
2: p ← SELECTPIVOT(a,min,max)
3: j ← SPLIT(a,min,max,p)
4: QUICKSORT(a,min, j)
5: QUICKSORT(a, j+1,max)
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Running time of QuickSort?
The Best Case Scenario:

• Each SPLIT partitions a
perfectly in half

• Analysis as in
MERGESORT

• =⇒ running time is
Θ(n logn)

Bonus: QUICKSORT sorts
in-place

• No extra arrays!

1: procedure QUICKSORT(a,min,max)
2: p ← SELECTPIVOT(a,min,max)
3: j ← SPLIT(a,min,max,p)
4: QUICKSORT(a,min, j)
5: QUICKSORT(a, j+1,max)
6: end procedure
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Random Pivot Selection
Suppose we choose each pivot randomly:

• SELECTPIVOT(a,min,max) returns a[i] where i is chosen
uniformly from {min,min+1, . . . ,max}
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Random Pivot Selection
Suppose we choose each pivot randomly:

• SELECTPIVOT(a,min,max) returns a[i] where i is chosen
uniformly from {min,min+1, . . . ,max}

Intuition:
• A randomly chosen pivot is “reasonably likely” to be “close” to the

median value
• with probability 1/2 p will be in the middle half of the values

• Perhaps this is enough to get a typical running time of O(n logn)?
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Random Pivot Selection
Suppose we choose each pivot randomly:

• SELECTPIVOT(a,min,max) returns a[i] where i is chosen
uniformly from {min,min+1, . . . ,max}

Theorem
The expected running time of QUICKSORT with random pivot
selection is O(n logn).

• This expectation is over the randomness of the algorithm, not
the input

=⇒ (Expected) guarantee holds for all arrays
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Random Pivot Selection

Theorem
The expected running time of QUICKSORT with random pivot
selection is O(n logn).

Proof.
Analyze the comparisons made by QUICKSORT:

• Write the values in a as a1 ≤ a2 ≤ ·· · ≤ an

• Define Xij = 1 if ai and aj are compared in an execution

• Xij = 1 only if ai or aj is chosen in pivot in SPLIT that separates ai and aj

• This happens with probability pij = 2/(j− i+1)

• This contributes E(Xij) = pij comparisons in expectation

• Summing over all i and j we get the expected number of comparisons to be

E
(∑n

j=1
∑

i<j pij

)
= O(n logn) (Use

∑n
k=1 1/k =Θ(logn))
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Sorting So Far
Elementary Sorting
Θ(n2) worst case

• SELECTIONSORT

• BUBBLESORT

• INSERTIONSORT

Faster Sorting
Θ(n logn) worst case

• HEAPSORT

• MERGESORT

Good in Practice?
Θ(n2) worst case
Θ(n logn) in
expectation

• QUICKSORT

Question

Can we sort in time o(n logn)?
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Comparison Based Sorting
High-level view of (sorting) algorithms (. . . so far)

• Access input, an array a
• Compare values of a:

• if a[i] ≤ a[j] do something
• otherwise do something else

• These are comparison based algorithms

Consider

• any comparison based sorting algorithm A
• every possible input a to A where a stores distinct values between

1 and n.
• Pn = {a |a contains distinct elements from 1 to n}
• |Pn| = n! = n · (n−1) · (n−2) · · ·1

Question. How does A distinguish between a,b ∈ Pn?
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Decision Trees
For a comparison based algorithm A a binary tree TA:

• vertices labelled with
• a comparison a[i] <= a[j] performed by A
• a subset of inputs

• root labels are (1) first comparison made by A, and (2) Pn

• each child corresponds to an outcome of comparison at parent
node

• left child labelled with TRUE inputs & next comparison
• right child labelled with FALSE inputs & next comparison

• leaf vertices correspond to completed computations

25 / 30



Example: InsertionSort

Unwrapping the Loops for n = 3

1. a[2] < a[1]

2. a[3] < a[2]
2.1 if yes, check a[2] < a[1]

(after SWAP)

Decision tree structure

• Start with all inputs
S = {123,132,213,231,312,321}

1: procedure INSERTIONSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: j ← i
4: while j > 0 and a[j] < a[j−1] do
5: SWAP(a, j, j−1)
6: j ← j−1
7: end while
8: end for
9: end procedure

• Apply comparison 1:
• ST = {213,312,321} 7→ {123,132,231}, then apply comparison 2

• STT = {312,321} 7→ {123,213}
• STF = {213} 7→ {123}

• SF = {123,132,231}, then apply comparison 2
• SFT = {132,231} 7→ {123,213}
• SFF = {123}
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InsertionSort Decision Tree
Note the set labels are sets of inputs

• INSERTIONSORT updates the arrays as it executes the decision tree

• The comparisons are applied to the updated arrays{
123,132,213
231,312,321

}
a[2] < a[1]

{213,312,321}
a[3] < a[2]

{312,321}
a[2] < a[1]

{321} {312}

{213}

{123,132,231}
a[3] < a[2]

{132,231}
a[2] < a[1]

{231} {132}

{123}

Observation. Every leaf has corresponds to a unique input. Why?
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Comparison Based Lower Bounds
Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in TA then:

• first d comparisons in a and b had same results
• A performed same operations on a and b

Observation 2. If a ̸= b and a leaf of TA is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in PA, then TA must have at least
|PA| = n! leaves.
Observation 3. A tree of depth d has at most 2d leaves.
Computation. Must have 2n ≥ n!:

=⇒ n ≥ log(n!) = log(n)+ log(n−1)+·· ·+ log(2)+ log(1) =Ω(n logn)

Theorem
Any comparison-based sorting algorithm requiresΩ(n logn)
comparisons to sort arrays of length n in the worst case.
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Next Time
• Non-comparison-based Sorting

• Can we sort in o(n logn) time?

• Text Searching
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Scratch Notes
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