		I			I.					l				l											0	2			-		1	-	1	E	-		2							
							I					I													C	D)]	J)					J			-	>						
0000000	00	0 0 0	0 0 0	0 0	0	0	0 0	0 0	0 (0 0	0	G (0 0	0	0	0 0		0 0	0 0	0.0) (0 0	0 0	0	0 0	il (0 0	0 0	0 0	0 0	U	0 0	0 0	0 0	0 0	0	0 0	0	0 0		0		0 0	
1234567	в 3	10 (0.)	2 13 1	1 15 18	17.1	6 19 2	0.21	22 23	24.2	5 26	27 28	29 B	0, 31	32 33	3 34 3	95 36	37.3	8 39 ·	10.4	1 42 4	3 44	5 46	47.4	8 4 9 3	50 51	52.5	3 54	55 5	6 57	58 59	60	61 62	63.6	4 65	66 61	68 (9 70	71	12 73	74 1	75 75	\overline{n}	18 79	80
1 11111	11	1	1.1	1	11	1	1.1	1	1	1	1 1	1	1.1		1	1	11	1	1 1	1	1 1	11	1 1	1	1.1	1	1 1	11	1	11	1	1.1	11	1	1 1	1	1 1	1	11	1	1 1	1	1 1	1
2 2 🛛 2 2 2 2	2 2 2	2 2 3	2 2 2	2 2	2	2 2	22	22	2	2	2 2	2 3	2 2	2 2	2	2	2 2	2 2	2 2	2	2 2	22	2 2	2	22	2 3	2 2	2 2	2 2	2 2	2	22	2 2	2 2	2 2	2	22	2	22	2	22	2	2 2	2
3333333	333	3 3	3 3 3	3 3 3	3		33	33	3	3 3	3	3 :	33	33	3	33		3 3	33	3	33	33	3 3	3	33	3	33	3 3	3 3	33	3	33	3 3	3 3	33	3	33	3	33	3	33	3	3	3
444444	44	4 4	444	44	4 4	4	44	44	4	4 4	44	4 4	44	44	4	44	4	4	44	4	4 4	44	4 4	4	44	4 4	4 4	4 4	4	44	4	44	4 4	4 4	44	4	44	4	44		44	4	4	4
555555	555	5 5	5	6	5 5	i 5	5	5 5		5 5	55	5		5 5		55	5 5	i 5	5	5 !	55	55	5 5	i 5	55	5 !	5 5	5 5	i 5	55	5	55	5 5	ó 5	55	5	55	5	55	5	55	5 !	55	5
6666666	5 6	66	6 6	5 6 E	6 6	5 6	66	6.6	6	56	66	6	66	66	6	66	6 6	56	66	6 6 1	66	66	68	6 6	66	6	66	6 8	66	66	6	S 6	6.6	66	66	6	66	5	66	6	66	5	66	6
11111	11	77		177	7		7		7	7 7	11	7	17	1 7	7	7 7	7	7	7 7	7	7 7	7 7	7 7	17	1 1	7	7 7	7	17	7 7	7	17	7 1	11		7			7	7	7	7		7

Lecture 08: Sorting II

COMP526: Efficient Algorithms

Updated: October 29, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Fourth Quiz, due Friday
 - Similar format to before
 - Covers (Balanced) Binary Search Trees (Lectures 6-7)
 - Quiz is closed resource
 - No books, notes, internet, etc.
 - Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment (Draft) Posted
 - Due Wednesday, 13 November
- 3. Attendance Code:

351153

Meeting Goals

- Discuss Divide and Conquer approaches to sorting
 - MergeSort
 - QUICKSORT
- Demonstrate lower bounds for comparison-based sorting

From Last Time

We recalled the **Sorting Task**:

		7	1	2	5	3	4	8	6	\mapsto	1	2	3	4	5	6	7	8
--	--	---	---	---	---	---	---	---	---	-----------	---	---	---	---	---	---	---	---

We discussed four sorting algorithms: $\Omega(n^2)$

- 1. SELECTIONSORT: find the (next) smallest element and put it in place
- 2. BUBBLESORT: "pull" the largest values toward the end of the array
- **3**. INSERTIONSORT: sort prefixes of the array by inserting the "next" element into sorted place
 - 4. HEAPSORT: make a (max) heap, then repeated call REMOVEMAX, placing elements at the end of the array

 $\bigcup(n^{L})$

Sorting by Divide & Conquer

The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

- 1. Break the input into smaller instances of the task
- 2. Solve the smaller instances
 - this is typically recursive!
- 3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting

MERGESORT: Divide by index

- divide array into left and right halves
- recursively sort halves
- merge halves

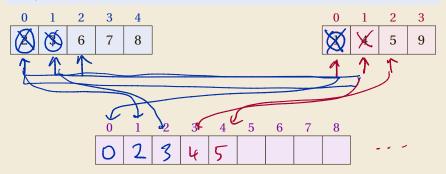
QUICKSORT: Divide by value

- pick a *pivot value p*
- split array according to *p*
 - $\leq p$ on left, > p on right
- recursively sort sub-arrays

Merging Sorted Arrays

Question

Suppose we are given two **sorted arrays**, *a* and *b*. How can we merge them into a single sorted array that contains all the values from both arrays?



Merging Code

Merging *sorted* arrays *a* (size *m*) and *b* (size *n*) into array *c* starting at index *s*

finalay 1: procedure MERGE(a, b, c, s, m, h) Merge arrays *a* and *b* into array *c* starting at index s. a has size m and b has size n when Not all 2: $i, j \leftarrow 0, k \leftarrow s$ while k < s + m + n do 3: if j = n or a[i] < b[j] then yet us 4: $c[k] \leftarrow \widehat{a[i]}$ 5: 6: $i \leftarrow i + 1$ 7: else 8: $c[k] \leftarrow b[j]$ $i \leftarrow i+1$ 9: 10: end if 11: $k \leftarrow k+1$ 12: end while 13: end procedure

first allay record

Merging Code

PollEverywhere

What is the running time of MERGE?

- 1. $\Theta(m+n)$ 3. $\Theta(\log(m+n))$ 2. $\Theta(m \cdot n)$ 4. $\Theta(\log mn)$

pollev.com/comp526

1: **procedure** MERGE(*a*, *b*, *c*, *s*, *m*, *n*) ⊳ Merge arrays a and b into array c starting at index s. a has size m and b K=StmAN has size *n* Start $i, j \leftarrow 0, k \leftarrow$ 2: 3: while k < s + m + n do **if** j = n or a[i] < b[j] **then** 4: 5: $c[k] \leftarrow a[i]$ 6: $i \leftarrow i + 1$ 5 7: else 8: $c[k] \leftarrow b[j]$ 9: $j \leftarrow j+1$ 10: end if 11: k+112: end while 13: end procedure s after ntm iterations 8/30

MERGESORTStrategy:

- To sort *a*[*i*...*k*]:
 - If i = k, then we're done
 - Otherwise split (sub)interval in half
 - Recursively sort halves
 - Merge sorted halves
 - copy values to new arrays for this

MERGESORTStrategy:

- To sort *a*[*i*...*k*]:
 - If i = k, then we're done
 - Otherwise split (sub)interval in half
 - Recursively sort halves
 - Merge sorted halves
 - copy values to new arrays for this

- 1: **procedure** MERGESORT(*a*, *i*, *k*)
- 2: if i < k then middle

3:
$$j \leftarrow \lfloor (i+k)/2 \rfloor$$
 index

4: \longrightarrow MERGESORT(*a*, *i*, *j*)

5:
$$\rightarrow$$
 MERGESORT $(a, j+1, k)$

6:
$$b \leftarrow \text{COPY}(a, i, j)$$

7: $c \leftarrow \text{COPY}(a, j+1, k)$

8: MERGE
$$(b, c, a, i)$$

9: **end if**

10: end procedure

(k-i) the

PollEverywhere

Consider an execution of MERGESORT(a, 0, 3) where a = [4, 2, 1, 3]. How many total calls to MERGESORT are executed (including the initial call)?

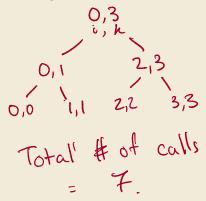
pollev.com/comp526

- 1: **procedure** MERGESORT(*a*, *i*, *k*)
- 2: **if** *i* < *k* **then**
- 3: $j \leftarrow \lfloor (i+k)/2 \rfloor$
- 4: MERGESORT(a, i, j)
- 5: MERGESORT(a, j+1, k)

6:
$$b \leftarrow \text{COPY}(a, i, j)$$

- 7: $c \leftarrow \text{COPY}(a, j+1, k)$
- 8: MERGE(*b*, *c*, *a*, *i*)
- 9: **end if**
- 10: end procedure

Tracing the Recursive Calls

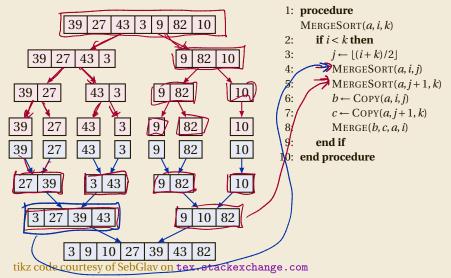


procedure MERGESORT(*a*, *i*, *k*)

2:	if $i < k$ then
3:	$ j \lfloor (i+k)/2 \rfloor $
4:	$\longrightarrow MergeSort(a, i, j)$ MergeSort(a, j + 1, k)
5:	MERGESORT $(a, j+1, k)$
6:	$b \leftarrow \text{COPY}(a, i, j)$
7:	$c \leftarrow \text{COPY}(a, j+1, k)$
8:	MERGE(<i>b</i> , <i>c</i> , <i>a</i> , <i>i</i>)
9:	end if

10: end procedure

A Larger Example



MergeSort Analysis

Question. What is the running time of MERGESORT?

PollEverywhere

What is the running time of MERGESORT?

- 1. $\Theta(n)$ 3. $\Theta(n^{3/2})$
- 2. $\Theta(n \log n)$

4. $\Theta(n^2)$

pollev.com/comp526

1: **procedure** MERGESORT(*a*, *i*, *k*)

- 2: **if** *i* < *k* **then**
- 3: $j \leftarrow \lfloor (i+k)/2 \rfloor$
- 4: MERGESORT(a, i, j)
- 5: MERGESORT(a, j+1, k)
- 6: $b \leftarrow \text{COPY}(a, i, j)$
- 7: $c \leftarrow \text{COPY}(a, j+1, k)$
- 8: MERGE(*b*, *c*, *a*, *i*)
- 9: **end if**
- 10: end procedure

Running Time of Recursive Functions

Question. How do we analyze the running time of recursively defined functions?

Running Time of Recursive Functions

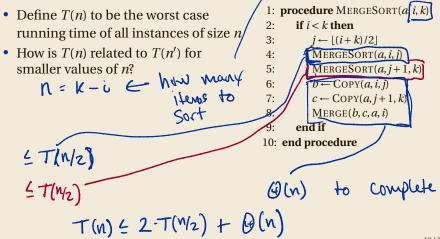
Question. How do we analyze the running time of recursively defined functions?

General Approach. Write (and solve) a *recursive formula* for the running time:

- Define *T*(*n* to be the worst case running time of all instances of size *n*
- Find a (recursive) relationship between $\underline{T(n)}$ and T(n') with n' < n
- Solve the recursive function for *T*.

A Recursive Formula for MergeSort

General Approach. Write (and solve) a *recursive formula* for the running time



A Recursive Formula for MergeSort

General Approach. Write (and solve) a *recursive formula* for the running time

- Define *T*(*n*) to be the worst case running time of all instances of size *n*
- How is T(n) related to T(n') for 4: some (large) const. smaller values of *n*? 5:
 - $\overline{T(n)} = 2T(n/2) + cn$

- 1: **procedure** MERGESORT(*a*, *i*, *k*)
- if i < k then 2:
 - $j \leftarrow \lfloor (i+k)/2 \rfloor$
 - MERGESORT(*a*, *i*, *j*)
 - MERGESORT(a, j+1, k)
 - $b \leftarrow \text{COPY}(a, i, j)$
 - $c \leftarrow \text{COPY}(a, j+1, k)$
- 8: MERGE(b, c, a, i)
- 9: end if

3:

6:

7:

10: end procedure

A Recursive Formula for MergeSort

General Approach. Write (and solve) a *recursive formula* for the running time

- Define *T*(*n*) to be the worst case running time of all instances of size *n*
- How is T(n) related to T(n') for smaller values of n?

•
$$T(n) = 2T(n/2) + cn$$

• How do we solve this **recursive formula**?

$$T(n) = 2T(n/2) + cn$$

= 2(2T(n/4) + c(n/2)) + cn
= 4T(n/4) + 2cn
= ...

1: **procedure** MERGESORT(*a*, *i*, *k*)

B:
$$j \leftarrow \lfloor (i+k)/2 \rfloor$$

- 4: MERGESORT(a, i, j)
- 5: MERGESORT(a, j+1, k)
- 6: $b \leftarrow \text{COPY}(a, i, j)$
- 7: $c \leftarrow \text{COPY}(a, j+1, k)$
- 8: MERGE(*b*, *c*, *a*, *i*)
- 9: **end if**

10: end procedure repeat tim 10g v aver 1

Proposition

Suppose that for all *n*, T(n) satisfies $T(n) \le 2T(n/2) + cn$ and T(1) = O(1). Then $T(n) = O(n \log n)$.

Proposition

Suppose that for all *n*, T(n) satisfies $T(n) \le 2T(n/2) + cn$ and T(1) = O(1). Then $T(n) = O(n \log n)$.

Proof.

We claim that for all k, $T(n) = 2^k T(n/2^k) + kcn$.

- The base case k = 1 is the hypothesis of the proposition.
- For the inductive step, apply inductive hypothesis along with the base case for $n' = n/2^k$. $= 2^k \left(zT(N/2^{k+1}) + \frac{1}{2^k} CN \right) + \binom{k}{2^k} CN +$

Proposition

Suppose that for all *n*, T(n) satisfies $T(n) \le 2T(n/2) + cn$ and T(1) = O(1). Then $T(n) = O(n \log n)$.

Proof.

We claim that for all k, $T(n) = 2^k T(n/2^k) + kcn$.

- The base case k = 1 is the hypothesis of the proposition.
- For the inductive step, apply inductive hypothesis along with the base case for $n' = n/2^k$.

Now apply the claim for $k = \log n$:

•
$$T(n) \leq 2^{\log n} T(n/2^{\log n}) + (\log n) cn = O(n\log n)$$

Proposition

Suppose that for all *n*, T(n) satisfies $T(n) \le 2T(n/2) + cn$ and T(1) = O(1). Then $T(n) = O(n \log n)$.

Consequence

The running time of MERGESORT is $O(n \log n)$

Proposition

Suppose that for all *n*, T(n) satisfies $T(n) \le 2T(n/2) + cn$ and T(1) = O(1). Then $T(n) = O(n \log n)$.

Consequence

The running time of MERGESORT is $O(n \log n)$

Also, MERGESORT performs reasonably well on large arrays in practice:

Good locality of reference in MERGE operations

Proposition

Suppose that for all *n*, T(n) satisfies $T(n) \le 2T(n/2) + cn$ and T(1) = O(1). Then $T(n) = O(n \log n)$.

Consequence

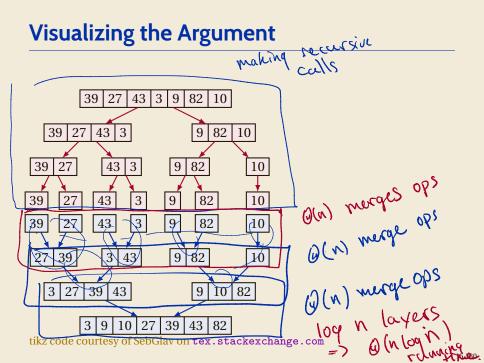
The running time of MERGESORT is *O*(*n*log *n*)

Also, MERGESORT performs reasonably well on large arrays in practice:

• Good locality of reference in MERGE operations

But MERGESORT operation requires $\Theta(m)$ additional space

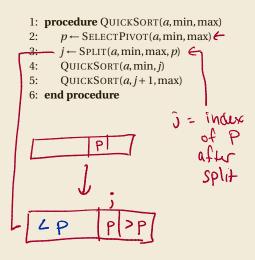
• MERGE operation copies values



QuickSort

QuickSort: Dividing by Value

- The MERGESORT algorithm divided arrays by **index**
- QUICKSORT divides arrays by value
 - 1. pick a **pivot value** *p* from the array
 - 2. **split** the array into sub-arrays
 - a[1...j-1] stores values $\leq p$
 - *a*[*j*...*n*−1] stores values > *p*
 - 3. recursively sort a[1...j-1]and a[j...n-1]

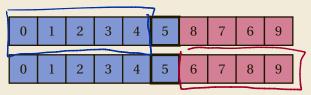


Visualizing QuickSort

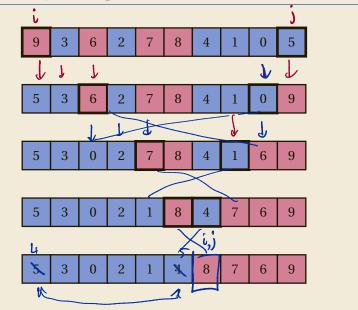
Select a pivot:

Split by pivot value:

Recursively sort left and right sides:



Hoare's Splitting Method



Splitting in Pseudocode

1: **procedure** SPLIT(*a*, min, max, *p*) $i \leftarrow \min$ 2: 3: $i \leftarrow \max$ stops at next index w) acij? while i < j do 4: while $a[i] \le p \operatorname{do}$ 5: $i \leftarrow i + 1$ 7 stops at next index w1 acj72P 6: end while 7: while $a[j] > p \operatorname{do}$ 8: $j \leftarrow j - 1$ 9: end while 10: SWAP(a, i, j)11: end while 12: swap p into index i-113: return i-114: 15: end procedure

array indices

Splitting in Pseudocode

PollEverywhere

What is the running time of SPLIT(*a*, min, max, *p*)?

pollev.com/comp526

N = Max - min 12. H of Values Molices14: considered 15:

1: **procedure** SPLIT(*a*, min, max, *p*) stop when i=) $i \leftarrow \min$ 2: *i* ← max 3: while i < j do 4: 5: while $a[i] \leq p \operatorname{do}$ $i \leftarrow i + 1$ 6: O(n) time end while 7: while $a[j] > p \operatorname{do}$ 8: $j \leftarrow j - 1$ 9: because end while 10: each SWAP(a, i, j)11: "Step" end while 12: swap p into index i-1 privas Ú.) 13: return i-115: end procedure 20/30

Splitting in Pseudocode

What is the running time of SPLIT(*a*, min, max, *p*)?

- 1: **procedure** SPLIT(*a*, min, max, *p*)
- 2: $i \leftarrow \min$ 3: $i \leftarrow \max$ while i < j do 4: while $a[i] \le p \operatorname{do}$ 5: $i \leftarrow i + 1$ 6: end while 7: while $a[j] > p \operatorname{do}$ 8: $j \leftarrow j - 1$ 9: end while 10: SWAP(a, i, j)11: end while 12: swap *p* into index i-113: return i-114: 15: end procedure

Running time of QuickSort?

PollEverywhere

What is the worst-case running time of QUICKSORT?

pollev.com/comp526

1: **procedure** QUICKSORT(*a*, min, max)

 $\mathcal{O}(l)$

- 2: $p \leftarrow \text{SELECTPIVOT}(a, \min, \max)$
- 3: $j \leftarrow \text{SPLIT}(a, \min, \max, p)$
- 4: $QUICKSORT(a, \min, j)$
- 5: QUICKSORT $(a, j+1, \max)$
- 6: end procedure

O(max - min)

Running time of QuickSort?

The Worst Case:

- the pivot is the largest or smallest element in *a*[min...max].
- Then one of the recursive calls has size max min 1.
- The overall running time is then $\Omega(n^2)$.

- 1: **procedure** QUICKSORT(*a*, min, max)
- 2: $p \leftarrow \text{SELECTPIVOT}(a, \min, \max)$
- 3: $j \leftarrow \text{SPLIT}(a, \min, \max, p)$
- 4: QUICKSORT(*a*, min, *j*)
- 5: QUICKSORT($a, j + 1, \max$)
- 6: end procedure

No matter what:

- Each call to SPLIT sorts at least one element (the pivot)
- Each call to QUICKSORT takes time *O*(*n*)
- \implies Running time is $O(n^2)$

So the overall running time is $\Theta(n^2)$

Running time of QuickSort?

PollEverywhere

What is the **best-case** running time of QUICKSORT?

pollev.com/comp526

- 1: **procedure** QUICKSORT(*a*, min, max)
- 2: $p \leftarrow \text{SELECTPIVOT}(a, \min, \max) \leftarrow$
- 3: $j \leftarrow \text{SPLIT}(a, \min, \max, p)$
- 4: QUICKSORT(*a*, min, *j*)
- 5: QUICKSORT($a, j + 1, \max$)
- 6: end procedure

Running time of QuickSort?

The Best Case Scenario:

- Each SPLIT partitions *a* perfectly in half
- Analysis as in MERGESORT
- \implies running time is $\Theta(n \log n)$
- **Bonus:** QUICKSORT sorts *in-place*
 - No extra arrays!

- 1: **procedure** QUICKSORT(*a*, min, max)
 - $p \leftarrow \text{SELECTPIVOT}(a, \min, \max)$
- 3: $j \leftarrow \text{SPLIT}(a, \min, \max, p)$
- 4: QUICKSORT(*a*, min, *j*)
- 5: QUICKSORT($a, j + 1, \max$)
- 6: end procedure

2:

Suppose we choose each pivot **randomly**:

• SELECTPIVOT(*a*, min, max) returns *a*[*i*] where *i* is chosen *uniformly* from {min, min + 1, ..., max}

Suppose we choose each pivot randomly:

• SELECTPIVOT(*a*, min, max) returns *a*[*i*] where *i* is chosen *uniformly* from {min, min + 1, ..., max}

Intuition:

- A randomly chosen pivot is "reasonably likely" to be "close" to the **median** value
 - with probability 1/2 p will be in the middle half of the values
- Perhaps this is enough to get a *typical* running time of $O(n \log n)$?

Suppose we choose each pivot randomly:

• SELECTPIVOT(*a*, min, max) returns *a*[*i*] where *i* is chosen *uniformly* from {min, min + 1, ..., max}

Theorem

The **expected** running time of QUICKSORT with random pivot selection is $O(n \log n)$.

- This expectation is over the **randomness of the algorithm**, not the input
- \implies (Expected) guarantee holds for *all* arrays

Theorem

The **expected** running time of QUICKSORT with random pivot selection is $O(n \log n)$.

Proof.

Analyze the comparisons made by QUICKSORT:

- Write the values in *a* as $a_1 \le a_2 \le \cdots \le a_n$
- Define $X_{ij} = 1$ if a_i and a_j are compared in an execution

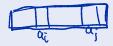
Theorem

The **expected** running time of QUICKSORT with random pivot selection is $O(n \log n)$.

Proof.

Analyze the comparisons made by QUICKSORT:

- Write the values in *a* as $a_1 \le a_2 \le \cdots \le a_n$
- Define $X_{ij} = 1$ if a_i and a_j are compared in an execution
- $X_{ij} = 1$ only if a_i or a_j is chosen in pivot in SPLIT that separates a_i and a_j
- This happens with probability $p_{ij} = (2)(j i + 1)$



Theorem

The **expected** running time of QUICKSORT with random pivot selection is $O(n \log n)$.

Proof.

Analyze the comparisons made by QUICKSORT:

- Write the values in *a* as $a_1 \le a_2 \le \cdots \le a_n$
- Define $X_{ij} = 1$ if a_i and a_j are compared in an execution
- $X_{ij} = 1$ only if a_i or a_j is chosen in pivot in SPLIT that separates a_i and a_j
- This happens with probability $p_{ij} = 2/(j-i+1)$
- This contributes $\mathbf{E}(X_{ij}) = p_{ij}$ comparisons in expectation
- Summing over all *i* and *j* we get the expected number of comparisons to be $E\left(\sum_{j=1}^{n}\sum_{i < j} p_{ij}\right) = O(n\log n) \qquad (Use \sum_{k=1}^{n} 1/k = \Theta(\log n))$

Sorting So Far

Elementary Sorting $\Theta(n^2)$ worst case

- SELECTIONSORT
- BUBBLESORT
- INSERTIONSORT

Faster Sorting

 $\Theta(\underline{n \log n})$ worst case

- HEAPSORT
- MergeSort

Good in Practice? $\Theta(n^2)$ worst case $\Theta(n \log n)$ in expectation

• QUICKSORT

Question

Can we sort in time $o(n \log n)$?

to read all Values Q(n)

Comparison Based Sorting

High-level view of (sorting) algorithms (... so far)

- Access input, an array *a*
- Compare values of a:
 - if $a[i] \le a[j]$ do something
 - otherwise do something else
- These are comparison based algorithms

Comparison Based Sorting

High-level view of (sorting) algorithms (... so far)

- Access input, an array *a*
- Compare values of a:
 - if $a[i] \le a[j]$ do something
 - otherwise do something else
- These are comparison based algorithms

Consider

- any comparison based sorting algorithm A
- **every** possible input *a* to *A* where *a* stores distinct values between 1 and *n*.
 - $P_n = \{a \mid a \text{ contains distinct elements from 1 to } n\}$

$$|P_n| = \underline{n!} = \underline{n} \cdot (n-1) \cdot (n-2) \cdots 1$$

Question. How does *A* distinguish between $a, b \in P_n$?

Decision Trees

For a comparison based algorithm A a binary tree T_A :

- vertices labelled with
 - a comparison $a[i] \le a[j]$ performed by *A*
 - a subset of inputs
- root labels are (1) first comparison made by A, and (2) P_n
- each child corresponds to an **outcome** of comparison at parent node
 - left child labelled with TRUE inputs & next comparison
 - right child labelled with FALSE inputs & next comparison
- leaf vertices correspond to completed computations

1: **procedure** INSERTIONSORT(*a*, *n*) 2: for i = 1, 2, ..., n - 1 do 3: j ← i while j > 0 and a[j] < a[j-1] do 4: 5: SWAP(a, j, j-1)6: $j \leftarrow j - 1$ 7: end while 8: end for 9: end procedure

Example: InsertionSort

Unwrapping the Loops for n = 3

- 1. a[2] < a[1]
- **2**. <u>a[3]</u> < a[2]
 - 2.1 if yes, check a[2] < a[1](after SWAP)

1: **procedure** INSERTIONSORT(*a*, *n*) 2: for i = 1, 2, ..., n - 1 do 3: i ← i 4: while j > 0 and a[j] < a[j-1] do 5: SWAP(a, j, j-1) $i \leftarrow i - 1$ 6: 7: end while 8: end for 9: end procedure

 $tatij atij aci] = \alpha$

Example: InsertionSort

Unwrapping the Loops for *n* = 3

- 1. a[2] < a[1]
- **2.** a[3] < a[2]
 - 2.1 if yes, check a[2] < a[1](after SWAP)

Decision tree structure

- Start with all inputs 8: end for
 S = {123, 132, 213, 231, 312, 321} 9: end procedure
- Apply comparison 1:
 - $S_T = \{213, 312, 321\} \rightarrow \{123, 132, 231\}$, then apply comparison 2 • $S_{TT} = \{312, 321\} \rightarrow \{123, 213\}$

2:

3:

5:

6:

7:

4:

1: **procedure** INSERTIONSORT(*a*, *n*)

for i = 1, 2, ..., n - 1 do

 $i \leftarrow i - 1$

end while

while j > 0 and a[j] < a[j-1] do SWAP(a, j, j-1).

i ← i

$$S_{TF} = \{213\} \mapsto \{123\}$$

•
$$S_F = 123, 132, 231$$
 then apply comparison 2

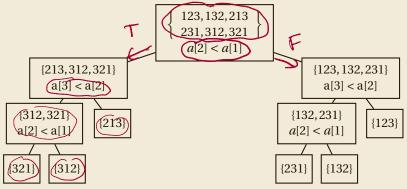
•
$$S_{FT} = \{132, 231\} \mapsto \{123, 213\}$$

•
$$S_{FF} = \{123\}$$

InsertionSort Decision Tree

Note the set labels are sets of inputs

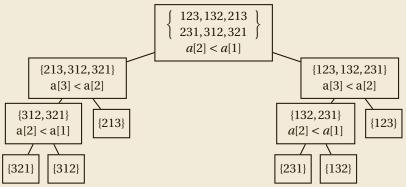
- INSERTIONSORT updates the arrays as it executes the decision tree
- The comparisons are applied to the **updated** arrays



InsertionSort Decision Tree

Note the set labels are sets of inputs

- INSERTIONSORT updates the arrays as it executes the decision tree
- The comparisons are applied to the **updated** arrays



Observation. Every *leaf* has corresponds to a unique input. *Why?*

Observation 1. If arrays *a* and *b* are in the same label at a vertex *v* at depth \underline{d} in T_A then:

- first *d* comparisons in *a* and *b* had same results
- A performed same operations on a and b

Obsevation 1. If arrays *a* and *b* are in the same label at a vertex *v* at depth *d* in T_A then:

- first *d* comparisons in *a* and *b* had same results
- A performed same operations on a and b

Observation 2. If $a \neq b$ and a *leaf* of T_A is labelled with both a and b then A did not sort *both* a and b.

Think about Why true

Obsevation 1. If arrays *a* and *b* are in the same label at a vertex *v* at depth *d* in T_A then:

- first *d* comparisons in *a* and *b* had same results
- A performed same operations on a and b

Observation 2. If $a \neq b$ and a *leaf* of T_A is labelled with both a and b then A did not sort *both* a and b.

Consequence. If *A* sorts all arrays in P_A then T_A must have at least $|P_A| = n!$ leaves.

Obsevation 1. If arrays *a* and *b* are in the same label at a vertex *v* at depth *d* in T_A then:

- first *d* comparisons in *a* and *b* had same results
- A performed same operations on a and b

Observation 2. If $a \neq b$ and a *leaf* of T_A is labelled with both a and b then A did not sort *both* a and b.

Consequence. If *A* sorts all arrays in *P*_A, then *T*_A must have at least $|P_A| = n!$ leaves. **Observation 3.** After of depth *d* has at most 2^d leaves.

Obsevation 1. If arrays *a* and *b* are in the same label at a vertex *v* at depth *d* in T_A then:

- first *d* comparisons in *a* and *b* had same results
- A performed same operations on a and b

Observation 2. If $a \neq b$ and a *leaf* of T_A is labelled with both a and b then A did not sort *both* a and b.

Consequence. If *A* sorts all arrays in P_A , then T_A must have at least $|P_A| = n!$ leaves.

Observation 3. A tree of depth d has at most 2^d leaves.

Computation. Must have $2^{n} \ge n!$:

 $\implies \mathbf{d} \ge \log(n!) = \log(n) + \log(n-1) + \dots + \log(2) + \log(1) = \Omega(n\log n)$

Obsevation 1. If arrays *a* and *b* are in the same label at a vertex *v* at depth *d* in T_A then:

- first *d* comparisons in *a* and *b* had same results
- A performed same operations on a and b

Observation 2. If $a \neq b$ and a *leaf* of T_A is labelled with both a and b then A did not sort *both* a and b.

Consequence. If *A* sorts all arrays in P_A , then T_A must have at least $|P_A| = n!$ leaves.

Observation 3. A tree of depth d has at most 2^d leaves.

Computation. Must have $2^n \ge n!$:

 $\implies n \ge \log(n!) = \log(n) + \log(n-1) + \dots + \log(2) + \log(1) = \Omega(n \log n)$

Theorem

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons to sort arrays of length n in the worst case.

Next Time

- Non-comparison-based Sorting
 - Can we sort in *o*(*n*log *n*) time?
- Text Searching

Scratch Notes