

Lecture 07: Sorting I

COMP526: Efficient Algorithms

Updated: October 24, 2024

Will Rosenbaum

University of Liverpool

Announcements

- 1. Third Quiz, due Friday
	- Similar format to before
	- Covers fundamental data structures (Lectures 4–6)
	- Quiz is **closed resource**
		- No books, notes, internet, etc.
		- Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment (Draft) Posted
	- Due Wednesday, 13 November
- 3. Attendance Code:

Meeting Goals

- Finish up balanced binary trees
- Discuss the sorting task
- Introduce HEAPSORT
- Discuss Divide and Conquer approaches to sorting
	- MERGESORT
	- QUICKSORT

AVL Trees

From Last Time

Binary Search Trees

Height and Balance

- **height** of $v = max$ distance to a descendent leaf
- *T* is **height balanced** if for every *v*, the heights of *v*'s children differ by at most 1
- Properties of height balanced trees
	- height *h* satisfies *h* ≤ 2log*n*
	- CONTAINS, ADD, REMOVE run in *O*(log*n*) time

Question. How can we efficiently maintain height balance for any sequence of operations?

Creating Imbalance

A Minimal Working Example (MWE) **balanced**

Question. What happens when we $ADD(5)?$

Creating Imbalance

A Minimal Working Example (MWE) **unbalanced**

Question. What happens when we $ADD(5)?$

Creating Imbalance

A Minimal Working Example (MWE)

Question. What happens when we $ADD(5)?$

PollEverywhere

Which vertices are unbalanced?

pollev.com/comp526

Fixing Imbalance

General Strategy. Find the "lowest" unbalanced vertex, and "pull up" its lower child.

Unbalanced Observations

Suppose *T* was balanced before ADD(*x*) and unbalanced after ADD(*x*). Then:

- 1. ADD(*x*) can only change the height/balance of *x*'s **ancestors**.
- 2. The height of any vertex can can only increase by one as the result of $ADD(x)$.

Unbalanced Observations

Suppose *T* was balanced before ADD(*x*) and unbalanced after ADD(*x*). Then:

- 1. ADD(*x*) can only change the height/balance of *x*'s **ancestors**.
- 2. The height of any vertex can can only increase by one as the result of $ADD(x)$.

This means:

- We only need to check *x*'s ancestors for imbalance after ADD(*x*).
- We only need to correct an imbalance of 2 to restore balance in the tree after ADD(*x*).

 \Leftarrow left rotation at $x \Leftarrow$

 \Leftarrow left rotation at $x \Leftarrow$

Main Observation. If *T* is a BST, then it remains a BST after any rotation.

Restoring Balance After Add

Suppose *T* was balanced before $ADD(w)$ and is unbalanced after the operation. Then define

- *z* is *w*'s closest unbalanced **ancestor**
- *y* is *z*'s child towards *w*
- *x* is *y*'s child towards *w*
	- Why do these vertices exist?

Heights After Add

PollEverywhere

If *z* had height *h* before ADD(*w*), what are the heights of z , T_1 , y , and x afterward?

pollev.com/comp526

Heights After Add

Heights after ADD(*w*)

- $z: h+1$
- $y : h$
- *x* : *h*−1
- *^T*¹ : *^h*−²
- T_2 : $h-2$
	- why not *h*−3?
- T_3 : $h-3$
	- why not *h*−4?
- *^T*⁴ : *^h*−²

Heights After Add

Heights after ADD(*w*)

- $z : h + 1$
- $y : h$
- *x* : *h*−1
- *^T*¹ : *^h*−²
- T_2 : $h-2$
	- why not *h*−3?
- T_3 : $h-3$
	- why not *h*−4?
- *^T*⁴ : *^h*−²

Question. How to "pull" T_2 up?

Heights After Right Rotation at *y*

PollEverywhere

What is the new height of *z*'s right child?

pollev.com/comp526

Heights After Right Rotation at *y*

Heights after Right Rotation at *y*

- $z : h + 1$
- *y* : *h*−1
- \bullet $\mathbf{x} \cdot \mathbf{h}$
- *^T*¹ : *^h*−²
- *^T*² : *^h*−²
- *^T*³ : *^h*−³
- *^T*⁴ : *^h*−²

Heights After Right Rotation at *y*

Heights after Right Rotation at *y*

- $z : h + 1$
- *y* : *h*−1
- \bullet $\mathbf{x} \cdot \mathbf{h}$
- *^T*¹ : *^h*−²
- T_2 : $h-2$
- *^T*³ : *^h*−³
- *^T*⁴ : *^h*−²

. *z x* $T_1 \setminus \bigtimes$ (*y T*2 $T_3 \setminus T_4$

. .

Damn! What if we try again?

Heights After Left Rotation at *z*

Heights after Right Rotation at *y*

- \bullet z :
- \bullet y :
- \bullet x :
- *^T*¹ : *^h*−²
- *^T*² : *^h*−²
- *^T*³ : *^h*−³
- *^T*⁴ : *^h*−²

Heights After Left Rotation at *z*

Heights after Right Rotation at *y*

- \bullet z :
- \bullet y :
- \bullet \mathbf{x} .
- *^T*¹ : *^h*−²
- T_2 : $h-2$
- *^T*³ : *^h*−³
- *^T*⁴ : *^h*−²

Hooray! We restored balance!!

• ... Not just at in our subtree, but on the whole tree?

Example we considered

Another Possibility

Only one rotation needed!

Also to consider: mirror images.

• These are the only 4 possibilities for *z*, *y*, and *x*.

Implementation Details

Unfortunately to pull this off, we need more overhead.

- More storage:
	- maintain **height** of each vertex (in addition to references to children, parent)
- More **work** on each ADD/REMOVE:
	- update the heights of vertices
	- check for imbalance
	- restore balance as above

Implementation Details

Unfortunately to pull this off, we need more overhead.

- More storage:
	- maintain **height** of each vertex (in addition to references to children, parent)
- More **work** on each ADD/REMOVE:
	- update the heights of vertices
	- check for imbalance
	- restore balance as above

PollEverywhere

What is the add'l cost of checking/restoring balance for ADD?

2. Θ(log*n*) 4. Θ(*n*)

pollev.com/comp526

Implementation Details

Unfortunately to pull this off, we need more overhead.

- More storage:
	- maintain **height** of each vertex (in addition to references to children, parent)
- More **work** on each ADD/REMOVE:
	- update the heights of vertices
		- **Only need to update ancestors of added vertex**
	- check for imbalance
		- **Only need to check ancestors of added vertex**
	- restore balance as above
		- **Only takes** *O*(1) **time!**

PollEverywhere

What is the add'l cost of checking/restoring balance for ADD?

2. Θ(log*n*) 4. Θ(*n*)

pollev.com/comp526

They Payoff

This scheme for balancing BST is called **AVL trees**

• Named for **A**delson-**V**elsky and **L**andis (1962)

Similar re-balancing technique also works for REMOVE method

• Re-balancing removal also takes worst case Θ(log*n*) time.

Big Deal: We can now implement ORDEREDSETs and MAPs where **all** operations are performed in worst case *O*(log*n*) time!

They Payoff

This scheme for balancing BST is called **AVL trees**

• Named for **A**delson-**V**elsky and **L**andis (1962)

Similar re-balancing technique also works for REMOVE method

• Re-balancing removal also takes worst case Θ(log*n*) time.

Big Deal: We can now implement ORDEREDSETs and MAPs where **all** operations are performed in worst case *O*(log*n*) time!

Other balanced (binary) tree implementations also exist:

- Red-Black trees
- Scapegoat trees
- 2-3 trees
- \bullet ...

All have similar *worst case, asymptotic* running time

• different implementations suited for different applications

ADT & Data Structure Recap

Simple ADTs

- STACK
- QUEUE
- DEQUE

Efficient implementation with linear data structures:

- arrays
- linked lists

All operations performed in (amortized) Θ(1) time.

ADT & Data Structure Recap

Simple ADTs

- STACK
- QUEUE
- DEQUE

Efficient implementation with linear data structures:

- arrays
- linked lists

All operations performed in (amortized) Θ(1) time.

Sophisticated ADTs

- PRIORITYQUEUE
- MAP (associative array, dictionary, symbol table)

Efficient implementation with tree-like data structures

- heaps
- (balanced) binary search trees

All operations in (amortized) *O*(log*n*) time.

Sorting

Fundamental Task: sorting a list of elements from smallest to largest

7 1 2 5 3 4 8 6 7−→ 1 2 3 4 5 6 7 8

Typical basic (unit cost) operations:

- **compare** two elements to see which is larger
- **swap** two elements in the array

Fundamental Task: sorting a list of elements from smallest to largest

7 1 2 5 3 4 8 6 7−→ 1 2 3 4 5 6 7 8

Typical basic (unit cost) operations:

- **compare** two elements to see which is larger
- **swap** two elements in the array

(Perhaps) surprisingly sorting is still an active area of study/research!

- practical and theoretical improvements still being found
- algorithms for different contexts
	- e.g., non-standard sorting models

Elementary Sorting

Iterative sorting:

• Sort in **phases** where each phase accomplishes some global task.

Three Basic Strategies

- 1. SELECTIONSORT
	- Each phase *i* finds the smallest element in *a*[*i*...*n*−1] and swaps it into position *i*
	- Uses (asymptotically) fewest SWAPs possible

Elementary Sorting

Iterative sorting:

• Sort in **phases** where each phase accomplishes some global task.

Three Basic Strategies

- 1. SELECTIONSORT
	- Each phase *i* finds the smallest element in *a*[*i*...*n*−1] and swaps it into position *i*
	- Uses (asymptotically) fewest SWAPs possible
- 2. BUBBLESORT
	- Each phase iterates over adjacent *pairs* and swaps those which are out of order
		- after phase *i*, *a*[*n*−*i*−1...*n*−1] contains the *i* largest elements sorted
	- Used mostly for illustrative purposes.

Elementary Sorting

Iterative sorting:

• Sort in **phases** where each phase accomplishes some global task.

Three Basic Strategies

- 1. SELECTIONSORT
	- Each phase *i* finds the smallest element in *a*[*i*...*n*−1] and swaps it into position *i*
	- Uses (asymptotically) fewest SWAPs possible
- 2. BUBBLESORT
	- Each phase iterates over adjacent *pairs* and swaps those which are out of order
		- after phase *i*, *a*[*n*−*i*−1...*n*−1] contains the *i* largest elements sorted
	- Used mostly for illustrative purposes.
- 3. INSERTIONSORT
	- Each phase *i* inserts $x = a[i]$ into sorted order in $a[0...i]$
	- Typically fast for *small* sequences and "almost sorted" sequences

InsertionSort in Detail

Phases *i* = 1,2,...,*n*−1:

- Phase *i* moves $x = a[i]$ into sorted position in *a*[0...*i*].
- Performed via adjacent comparisons:
	- if *x* is smaller than left neighbor, swap *x* with left neighbor

1: **procedure** INSERTIONSORT(*a*,*n*) 2: **for** *i* = 1,2,...,*n*−1 **do** 3: $j \leftarrow i$ 4: **while** *j* > 0 and *a*[*j*] < *a*[*j* −1] **do** 5: $SWAP(a, j, j-1)$ 6: $j \leftarrow j-1$ 7: **end while** 8: **end for** 9: **end procedure**

InsertionSort in Detail

PollEverywhere

What is the *worst case* running time of INSERTIONSORT?

- 1. Θ(*n*) 3. $\Theta(n^2)$
- 2. $\Theta(n \log n)$ 4. $\Theta(2^n)$

pollev.com/comp526

1: **procedure** INSERTIONSORT(*a*,*n*) 2: **for** *i* = 1,2,...,*n*−1 **do** 3: $j \leftarrow i$ 4: **while** $j > 0$ and $a[j] < a[j-1]$ **do** 5: $SWAP(a, j, j-1)$ 6: $j \leftarrow j-1$ 7: **end while** 8: **end for** 9: **end procedure**

State after each phase:

- 1: **procedure** INSERTIONSORT(*a*,*n*) 2: **for** *i* = 1,2,...,*n*−1 **do** 3: $j \leftarrow i$
- 4: **while** *j* > 0 and *a*[*j*] < *a*[*j* −1] **do** 5: $SWAP(a, j, j-1)$
- 6: $j \leftarrow j-1$
- 7: **end while**
- 8: **end for**
- 9: **end procedure**

Sorting Using Heaps

Recall the (array backed) heap data structure:

Heap Operations in *O*(log*n*) time:

- \bullet INSERT (x)
- REMOVEMINO.

Question. How to use heaps to sort *efficiently* ($o(n^2)$ time)?

Sorting Using Heaps

Recall the (array backed) heap data structure:

Heap Operations in *O*(log*n*) time:

- INSERT (x)
- REMOVEMINO.

Question. How to use heaps to sort *efficiently* ($o(n^2)$ time)?

- Add all elements to a heap.
- Repeatedly REMOVEMIN and add elements back to sorted array

What is the running time of this procedure?

Sorting Using Heaps

Recall the (array backed) heap data structure:

Heap Operations in *O*(log*n*) time:

- INSERT (x)
- REMOVEMINO.

Question. How to use heaps to sort *efficiently* ($o(n^2)$ time)?

- Add all elements to a heap.
- Repeatedly REMOVEMIN and add elements back to sorted array

What is the running time of this procedure?

• $\Theta(n \log n)$ This is much better than $\Theta(n^2)$!

Another Question. Do we need a separate heap?

Sorting In-Place

Heap Modification : **MaxHeap**

- Same as MinHeap, but all inequalities reversed
	- **Largest** value at root Children store **smaller**
	- values

HEAP SORT outline:

- 1. Make array a MaxHeap
	- HEAPIFY by calling BUBBLEUP at each index
- 2. Sort from right side of array
	-
	- swap *^a*[0] with *^a*[*n*−*ⁱ* [−]1] ^TRICKLEDOWN from *^a*[0] to $a[n-i-1]$

Sorting In-Place

Heap Modification: **MaxHeap**

- Same as MinHeap, but all inequalities reversed
	- **Largest** value at root
	- Children store **smaller** values

HEAPSORT outline:

- 1. Make array a MaxHeap
	- HEAPIFY by calling BUBBLEUP at each index
- 2. Sort from right side of array
	- swap $a[0]$ with $a[n-i-1]$
	- TRICKLEDOWN from *a*[0] to $a[n-i-1]$
- 1: **procedure** HEAPSORT(*a*,*n*) 2: **for** *i* = 1,2,...,*n*−1 **do** 3: BUBBLEUP(*a*,*i*) 4: ▷ Start from index *i* 5: **end for** 6: **for** *i* = *n*−1,*n*−2,...,1 **do** 7: SWAP(*a*,0,*i*) 8: TRICKLEDOWN(*a*,*i* −1) 9: **▷ Stop at index** *i* − 1 10: **end for** 11: **end procedure**

Sorting In-Place

Heap Modification: **MaxHeap**

- Same as MinHeap, but all inequalities reversed
	- **Largest** value at root
	- Children store **smaller** values

HEAPSORT outline:

- 1. Make array a MaxHeap
	- HEAPIFY by calling BUBBLELLD at each index
- 2. Sort from right side of array
	- swap $a[0]$ with $a[n-i-1]$
	- TRICKLEDOWN from *a*[0] to $a[n-i-1]$
- **Question.** What is the running time of HEAPSORT?
- 1: **procedure** HEAPSORT(*a*,*n*) 2: **for** *i* = 1,2,...,*n*−1 **do** 3: BUBBLEUP(*a*,*i*) 4: ▷ Start from index *i* 5: **end for** 6: **for** *i* = *n*−1,*n*−2,...,1 **do** 7: SWAP(*a*,0,*i*) 8: TRICKLEDOWN(*a*,*i* −1) 9: **▷ Stop at index** *i* − 1 10: **end for**
- 11: **end procedure**

Step 1: HEAPIFY!

HeapSort Example

Step 2: Remove maximum values!

Worst case running time is Θ(log*n*), but HEAPSORT doesn't perform great in practice (for large arrays)

• poor locality of reference

Sorting by Divide & Conquer

The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

- 1. Break the input into smaller instances of the task
- 2. Solve the smaller instances
	- this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

- 1. Break the input into smaller instances of the task
- 2. Solve the smaller instances
	- this is typically recursive!
- 3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting

MERGESORT: Divide by *index*

- divide array into left and right halves
- recursively sort halves
- merge halves

The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

- 1. Break the input into smaller instances of the task
- 2. Solve the smaller instances
	- this is typically recursive!
- 3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting

MERGESORT: Divide by *index*

- divide array into left and right halves
- recursively sort halves
- merge halves

QUICKSORT: Divide by *value*

- pick a *pivot value p*
- split array according to *p*
	- $\leq p$ on left, $> p$ on right
- recursively sort sub-arrays

Merging Sorted Arrays

Ouestion

Suppose we are given two **sorted arrays**, *a* and *b*. How can we merge them into a single sorted array that contains all the values from both arrays?

Merging Code

Merging *sorted* arrays *a* (size *m*) and *b* (size *n*) into array *c* starting at index *s*

- 1: **procedure** MERGE(*a*, *b*, *c*, *s*, *m*, *n*) \triangleright Merge arrays *a* and *b* into array *c* starting at index *s*. *a* has size *m* and *b* has size *n*
- 2: $i, j \leftarrow 0, k \leftarrow s$ 3: while $k < s+m+n$ do 4: **if** $j = n$ or $a[i] < b[j]$ then 5: $c[k] \leftarrow a[i]$ 6: $i \leftarrow i+1$ 7: **else** 8: $c[k] \leftarrow b[i]$ 9: $j \leftarrow j+1$ 10: **end if** 11: $k \leftarrow k+1$ 12: **end while** 13: **end procedure**

Merging Code

PollEverywhere

What is the running time of MERGE?

- 1. Θ(*m*+*n*) 3. Θ(log(*m*+*n*))
- 2. Θ(*m*·*n*) 4. Θ(log*mn*)

pollev.com/comp526

1: **procedure** MERGE(*a*, *b*, *c*, *s*, *m*, *n*) \triangleright Merge arrays *a* and *b* into array *c* starting at index *s*. *a* has size *m* and *b* has size *n*

$$
2: \qquad i,j \leftarrow 0, \, k \leftarrow s
$$

- 3: **while** *k* < *s*+*m*+*n* **do**
- 4: **if** $j = n$ or $a[i] < b[j]$ then
- 5: $c[k] \leftarrow a[i]$

6:
$$
i \leftarrow i+1
$$

7: **else**

8:
$$
c[k] \leftarrow b[j]
$$

9:
$$
j \leftarrow j+1
$$

10: **end if**

$$
11: \qquad \qquad k \leftarrow k+1
$$

- 12: **end while**
- 13: **end procedure**

MERGESORTStrategy:

- To sort *a*[*i*...*k*]:
	- If $i = k$, then we're done
	- Othewise split (sub)interval in half
	- Recursively sort halves
	- Merge sorted halves
		- copy values to new arrays for this

MERGESORTStrategy:

- To sort *a*[*i*...*k*]:
	- If $i = k$, then we're done
	- Othewise split (sub)interval in half
	- Recursively sort halves
	- Merge sorted halves
		- copy values to new arrays for this
- 1: **procedure** MERGESORT(*a*,*i*,*k*)
- 2: **if** $i < k$ **then**
- 3: $j \leftarrow |(i+k)/2|$
- 4: MERGESORT(*a*,*i*,*j*)
- 5: MERGESORT $(a, j+1, k)$

6:
$$
b \leftarrow \text{COPY}(a, i, j)
$$

- 7: $c \leftarrow \text{Copy}(a, j+1, k)$
- 8: MERGE(*b*,*c*,*a*,*i*)
- 9: **end if**
- 10: **end procedure**

PollEverywhere

Consider an execution of MERGESORT(*a*,0,3) where $a = [4, 2, 1, 3]$. How many total calls to MERGESORT are executed (including the initial call)?

pollev.com/comp526

- 1: **procedure** MERGESORT(*a*,*i*,*k*)
- 2: **if** $i < k$ **then**
- 3: $j \leftarrow |(i+k)/2|$
- 4: MERGESORT(*a*,*i*,*j*)
- 5: MERGESORT $(a, j+1, k)$

6:
$$
b \leftarrow \text{COPY}(a, i, j)
$$

- 7: $c \leftarrow \text{COPY}(a, j+1, k)$
- 8: MERGE(*b*,*c*,*a*,*i*)
- 9: **end if**
- 10: **end procedure**

Tracing the Recursive Calls

- 1: **procedure** MERGESORT(*a*,*i*,*k*)
- 2: **if** $i < k$ then
- 3: $j \leftarrow |(i+k)/2|$
- 4: MERGESORT(*a*,*i*,*j*)
- 5: MERGESORT $(a, j+1, k)$

6:
$$
b \leftarrow \text{COPY}(a, i, j)
$$

- 7: $c \leftarrow \text{COPY}(a, j+1, k)$
- 8: MERGE(*b*,*c*,*a*,*i*)
- 9: **end if**
- 10: **end procedure**

A Larger Example

tikz code courtesy of SebGlav on [tex.stackexchange.com](https://tex.stackexchange.com/questions/592155/how-to-draw-a-merge-sort-algorithm-figure)

MergeSort Analysis

Question. What is the running time of MERGESORT?

• How do we analyzing the running time of a recursive function?

MergeSort Analysis

Question. What is the running time of MERGESORT?

• How do we analyzing the running time of a recursive function?

Think about this for next time.

Next Time: More Sorting

- MERGESORT analysis
- QUICKSORT
- Lower Bounds
- Non-comparison Based Methods
- More Sorting Algorithms?

Scratch Notes