1	0.1						l	I.	I.						I																										
- E	1					I					I																														
00000000	000	0 0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	0.0	0	0	0 0	0	0	0 (0	0 0	0 0		0 0	0 0	0 i	0	0 0	0 0	0 0	U	0 0	0 0	0 0	0 0	0 0	0	0 0	0		0	D	0
1 1 1 1 1 1 1		11	1	1	1 1	11	1	1	1 1	11	1 1	1	2 33 .	1	1	11	1 1	1	11	11	1	11	11	1	1 1	11	11	1	1	1 1	1 1	a 65 1	11	11	1	11	1	1 1	1	1 1	^{79 60}
2 2 🛛 2 2 2 2 2	2 2 2 2	2 2 2	22	2	2 2	2 2	22	2 2	2	2 2	22	2 2	2 2	22		22	2 2	2	22	2 2	2 2	22	2 2	2	22	2 2	2 2	2.2	2	22	2 2	2 2	22	2 2	2	2 2	2	22	2 :	2 2	2 2
3333333	3333	333	33	33		33	33	3 3	3	3	33	3 3	3 3	33	3	3	3	3	33	3 3	3	33	33	3	33	33	33	3 3	3	33	3 3	3 3	33	3 3	3	33	3	33	3	33	3
4444444	4444	444	4 4	44	44	44	44	44	4 4	44	44	4 4	4	44	4	4	4 4	4	44	4 4	4	44	4 4	4	44	44	44	4 4	4	44	4 4	4	4 4	4 4	4	44	4	4	4	4	4 4
5555555	5 5 5 5	5 5	5	55	55	5	55	5	5 5	i 5	5	1	5 5	5	5	55	5	5	55	5 5	i 5	55	5 5	5	55	55	55	5 5	i 5	55	5 5	ó 5	55	5 5	5	55	5	55	5	55	5.5
6666666	6 🛛 6 1	6 6	66	66	66	66	6 6	66	6 6	6 6	66	6 6	66	66	6	66	6 (6 6	66	6 6	6 6	66	6 6	6	66	66	66	68	6	S 6	6 6	56	66	6 8	6	56	6	66	6	5 6	66
11111	111	171	77	77	11	7		17	7	11	11	7 1	17	77	7	11	Ľ	11		7	11	17	77	7	17	77	77		7	17	7 1	11		7 7	7	7 7		7	7		11

Lecture 6: Data Structures III

COMP526: Efficient Algorithms

Updated: October 22, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Third Quiz, due Friday
 - Similar format to before
 - Covers fundamental data structures (Lectures 4-6)
 - Quiz is closed resource
 - No books, notes, internet, etc.
 - Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment (Draft) Posted
 - Due Wednesday, 13 November
- 3. Attendance Code:

Meeting Goals

- Finish up heaps
 - Give an efficient array-backed PRIORITYQUEUE
- Introduce two more ADTs:
 - OrderedSet
 - MAP
- Introduce binary search trees
- Discuss balanced binary search trees

Heaps

Last Time: Priority Queues and Heaps

Priority Queues, Formally

Heap Implementation

- *S* is the state of the queue, initially $S = \emptyset$
- S.INSERT(x, p(x)): $S = x_0 x_1 \cdots x_i x_{i+1} \cdots x_{n-1} \mapsto x_0 x_1 \cdots x_i x_{i+1} \cdots x_{n-1}$
 - where $p(x_i) \le p(x) < p(x_{i+1})$
- *S*.MIN() : returns x_0 where $S = x_0 x_1 \cdots x_{n-1}$
- S.REMOVEMIN() : $xS \mapsto S$, returns x

- INSERT via BUBBLEUP procedure
- REMOVEMIN via TRICKLEDOWN procedure
- Issue: using NODEs incurs overhead
 - locality of reference
 - storing additional references

Question. How can we represent heaps as arrays?

A Clue: Number the Vertices

PollEverywhere Question

Suppose a vertex is assigned a label i > 0 in this numbering of the vertices. What is the label of *i*'s parent in the labeling?

pollev.com/comp526

Arrays as Heaps

Associate numbering of tree vertices as array indexes!

Complete binary tree representation

- If *i* > 0, then *i*'s parent has index ⌊(*i*−1)/2⌋
- *i*'s left child has index 2*i*+1
- *i*'s right child has index 2*i*+2

Array representation

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	3	13	10	6	66	39	42	17	96	70	89	95	98	63

Example: Array BUBBLEUP

We can apply heap procedures directly to the array without reference to the tree itself!

- If *i* > 0, then *i*'s parent has index |(i-1)/2|
- *i*'s left child has index 2i + 1
- *i*'s right child has index 2i + 2•

- 1: **procedure** INSERT(p)
- 2: $v \leftarrow$ new vertex storing p
- 3: $\mu \leftarrow$ first vtx with < 2 children
- 4: add v as u's child
- 5: $PARENT(v) \leftarrow u$
- 6: while value(v) < value(u) and $u \neq \bot$ do 7:
 - SWAP(value(v), value(u))
- 8: $v \leftarrow u$
- 9: $u \leftarrow \text{PARENT}(v)$
- end while 10:
- 11: end procedure

0 2 5 6 7 8 9 1 3 4 10 11 12 13 14 3 17 70 2 13 10 6 66 39 42 96 89 95 98

Example. INSERT(4)

Array Backed Operations

Using arrays, we can define INSERT and REMOVEMIN much more cleanly!

- 1: **procedure** INSERT(p) 2: \triangleright *n* is heap size $i \leftarrow n$ 3: $a[i] \leftarrow p$ 4: $n \leftarrow n+1$ 5: $j \leftarrow \lfloor (i-1)/2 \rfloor > j$ is *i*'s parent 6: **while** i > 0 and a[i] < a[j] **do** 7: SWAP(a, i, j)8: $i \leftarrow j$ $j \leftarrow \lfloor (i-1)/2 \rfloor$ 9: end while 10: 11: end procedure
- 1: procedure REMOVEMIN
- 2: $m \leftarrow a[0]$
- 3: $a[0] \leftarrow a[n-1]$

4:
$$n \leftarrow n-1$$

5: $i \leftarrow 0$

$$: i \leftarrow 0$$

6: $i \leftarrow \operatorname{argmin} \{a[2i+1], a[2i+2]\}$

7: **while**
$$j < n$$
 and $a[i] > a[j]$ **do**
8: SWAP (a, i, i)

$$i \leftarrow j$$

9:

- $i \leftarrow \arg\min\{a[2i+1], a[2i+2]\}$ 10:
- end while 11:
- 12: return m

13: end procedure

Both of these operations still complete after $O(\log n)$ iterations

very little overhead, since only array operations are used!

Ordered Sets and Maps

Adding Order to Elements

Question. What made our operations on heaps efficient?

• Answer: Order! We can order/compare priorities.

Two more ADT with **ordered** elements:

Ordered Sets store a collection (set) of *distinct* elements from an ordered universe.

- CONTAINS(*x*) check if the set contains *x*' = *x* and return *x*'
- ADD(*x*) add *x* to the set if *x* was not present
- REMOVE(*x*) remove *x* if *x* was present

Maps^{*a*} store a collection of *values* with associated ordered *keys* with array-like access.

- PUT(*k*, *v*) set the value associated with key *k* to *v*
- GET(*k*) return the value associated with key *k*
- REMOVE(*k*) remove the pair associated with *k*
- CONTAINS(*k*) check if the map contains a value associated with *k*

^{*a*}Aka: associative arrays, dictionaries (Python dict), symbol table

Ordered Sets vs Maps

Ordered Sets

- CONTAINS(x) check if the set contains x' = x and return x'
- ADD(*x*) add *x* to the set if *x* was not present
- REMOVE(*x*) remove *x* if *x* was present

Maps

- PUT(*k*, *v*) set the value associated with key *k* to *v*
- GET(*k*) return the value associated with key *k*
- REMOVE(*k*) remove the pair associated with *k*
- CONTAINS(*k*) check if the map contains a value associated with *k*

PollEverywhere Question

If we are given an ORDEREDSET implementation, how could we use it to implement a MAP?

Ordered Sets via Arrays

ORDEREDSETS can be implemented by arrays:

- Maintain a sorted array $a = [x_0, x_1, ..., x_n]$ with each $x_i \le x_{i+1}$.
- ADD(x) and REMOVE(x) implemented in $\Theta(n)$ worst case time
 - To ADD find index *i* such that $x_i \le x < x_{i+1}$
 - Shift elements x_j with $j \ge i + 1$ to next index
 - This uses $\Theta(n)$ time
 - Set $a[i+1] \leftarrow x$

Example. How to ADD(42)?

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	10	28	31	34	39	51	63	70	74	82	87	91	95	

Question. How can we implement CONTAINS(*x*) more quickly?

Efficient Search

Idea. Binary Search:

- Start at the *middle index j*
 - $x \le a[j] \implies$ index of x must be $i \le j$
 - otherwise i > j
- Apply procedure to remaining interval with half excluded
 - compare *x* to midpoint of remaining interval
 - eliminate half of the interval
- Repeat

1: procedure BINARYSEARCH(x)

- 2: $i \leftarrow 0, k \leftarrow n-1$
- 3: $j \leftarrow \lfloor (i+k)/2 \rfloor$ 4: while i < j do
- 5: **if** $x \le a[j]$ **then**
- 6: $k \leftarrow j$ 7: **else**
 - i←j end if
- 9: end if 10: end while
- 11: **return** *i*

8:

12: end procedure

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	10	28	31	34	39	42	51	63	70	74	82	87	91	95

Efficiency of Binary Search

PollEverywhere

What is the (worst case) running time of BINARYSEARCH on an array of length *n*?

pollev.com/comp526

- 1: **procedure** BINARYSEARCH(x)
- 2: $i \leftarrow 0, k \leftarrow n-1$
- 3: $j \leftarrow \lfloor (i+k)/2 \rfloor$
- 4: while i < j do
- 5: **if** $x \le a[j]$ **then**

6:
$$k \leftarrow j$$

- 7: **else**
- 8: $i \leftarrow j$
- 9: **end if**
- 10: end while
- 11: **return** *i*
- 12: end procedure

Efficiency of Binary Search

Proposition

The worst-case running time of BINARYSEARCH is $\Theta(\log n)$.

Proof.

- Consider the value of k i.
- After ℓ iterations of the loop, have $k - i \le \frac{n}{2^{\ell}}$ (induction)
- Termination when k i < 1

•
$$\ell = \lceil \log n \rceil + 1 \implies \frac{n}{2^{\ell}} \le 1$$

- 1: **procedure** BINARYSEARCH(x)
- 2: $i \leftarrow 0, k \leftarrow n-1$

B:
$$j \leftarrow \lfloor (i+k)/2 \rfloor$$

4: while i < j do

5: **if**
$$x \le a[j]$$
 then

6:
$$k \leftarrow j$$

7: **else**

B:
$$i \leftarrow j$$

- 9: **end if**
- 10: end while
- 11: **return** *i*
- 12: end procedure

Making All Operations Efficient?

A Nagging Question

For ORDEREDSETS, we can perform all operations in o(n) time?

- Array implementation only gives CONTAINS in O(log n) time
- Other operations are $\Theta(n)$
- This seems harder than efficient PRIORITYQUEUE as elements can be added *and* removed from anywhere in the data structure

Up next: A solution in two parts

- 1. Binary Search Trees
- 2. Balancing Binary Trees

Binary Search Trees

Binary Search Tree Definition

Definition

Suppose *T* is a binary tree and every vertex v in *T* has an associated value. We say *T* is a **binary search tree** (**BST**) if for every vertex (value) *v*:

- 1. every *left descendant* u satisfies $u \le v$,
- 2. every *right descendant w* satisfies $w \ge v$.

BST Search

Question

Given a BST *T*, how can we search for a value *x* in *T*?

CONTAINS(19)?

BST Search

Question

5:

7:

Given a BST *T*, how can we search for a value *x* in *T*?

- 1: **procedure** CONTAINS(*x*)
- 2: v = tree root
- 3: **while** $v \neq x$ and $v \neq \bot$ **do**
- 4: **if** x < v **then**
 - $v \leftarrow \text{LeftChild}(v)$
- 6: **else**
 - $v \leftarrow \text{RightChild}(v)$
- 8: end if
- 9: end while
- 10: **return** *v*
- 11: end procedure

PollEverywhere

What is the (worst case) running time of CONTAINS on a tree with *n* vertices?

pollev.com/comp526

BST CONTAINS Efficiency

Observation

The (worst-case) running time of CONTAINS on *T* is $\Theta(h)$ where *h* is the **height** of *T*

• *h* is the length of the longest path from root to any leaf in *T*

The height of *T* can be:

- As small as log n
- As large as n-1

The Moral

The efficiency of CONTAINS depends on the structure of *T*.

Question

How could we ADD(19) to the following BST so it remains a BST?

Observation. To ADD(*x*), we should add a new vertex wherever the CONTAINS(*x*) execution fails to find *x*.

Adding in Pseudocode

1: p :	rocedure ADD(x)	Example. ADD(8)
2:	$v, u \leftarrow \text{root}$	-
3:	while $v \neq \perp$ do	
4:	if $x = v$ then	
5:	return	
6:	else if $x < v$ then	\sim
7:	$u \leftarrow v$	(10) (20)
8:	$v \leftarrow \text{LeftChild}(v)$	\succ
9:	else	
10:	$u \leftarrow v$	(5) (12) (19) (25)
11:	$v \leftarrow \text{RightChild}(v)$	(3) (12) (16) (23)
12:	end if	
13:	end while	
14:	if $x < v$ then	(3) (7) (17) (22)
15:	set <i>x</i> as <i>v</i> 's left child	$\gamma \gamma \lor \circ \circ$
16:	else	
17:	set <i>x</i> as <i>v</i> 's right child	(1)
18:	end if	
19: e	nd procedure	

Adding in Pseudocode

1:	procedure ADD(<i>x</i>)
2:	$v, u \leftarrow \text{root}$
3:	while $v \neq \perp$ do
4:	if $x = v$ then
5:	return
6:	else if $x < v$ then
7:	$u \leftarrow v$
8:	$v \leftarrow \text{LeftChild}(v)$
9:	else
10:	$u \leftarrow v$
11:	$v \leftarrow \text{RightChild}(v)$
12:	end if
13:	end while
14:	if $x < v$ then
15:	set <i>x</i> as <i>v</i> 's left child
16:	else
17:	set x as v's right child
18:	end if
10.	and procedure

PollEverywhere Question

Describe a sequence of ADD(x) operations starting from an empty BST such that every operation takes $\Omega(n)$ time.

pollev.com/comp526

BST Remove

Question

How could we remove an element from a BST?

Case 1: A leaf. Just remove it!

BST Remove

Question

How could we remove an element from a BST?

Case 2: A vertex *v* **with single child**. Splice! Set *v*'s child to be its parent's child.

BST Remove

Question

How could we remove an element from a BST?

Case 3: A vertex v with two children.

- 1. Find *next smallest* value w.
- 2. Copy *w*'s value to *v*.
- 3. Remove *w*

So Far...

... we've implemented

- CONTAINS(*x*)
- ADD(*x*)
- REMOVE(*x*)

for OrderedSets.

But we haven't improved efficiency

- All of these operations can cost as much as $\Theta(n)$
 - efficiency depends on previous operations performed!

Idea. We can *restructure* BSTs.

- Goal: ensure that the BST has small height.
- After each update, check and update tree structure.
 - maintain BST property
 - updates performed efficiently

Balanced Binary Trees

Distinguishing the Good from the Bad

Height Balanced Trees

Definition (Left and Right Height)

Let v be a vertex in a tree. We define:

- $h(\perp) = -1$
- $h(v) = 1 + \max(h(\text{LEFTCHILD}(v)), h(\text{RIGHTCHILD}(v)))$
- $h_{\ell}(v) = h(\text{LEFTCHILD}(v))$
- $h_r(v) = h(\text{RIGHTCHILD}(v))$

Height Balanced Trees

Definition (Left and Right Height)

Let v be a vertex in a tree. We define:

- $h(\perp) = -1$
- $h(v) = 1 + \max(h(\text{LeftCHILD}(v)), h(\text{RIGHTCHILD}(v)))$
- $h_{\ell}(v) = h(\text{LEFTCHILD}(v))$
- $h_r(v) = h(\text{RIGHTCHILD}(v))$

Def. (Height Balanced)

We call a tree **height balanced** if for every vertex v, $|h_{\ell}(v) - h_r(v)| \le 1$.

Properties of Height Balanced Trees

Proposition

Suppose *T* is a height balanced tree of height *h*. Then *T* has $n \ge 2^{h/2}$ vertices.

Proof.

Let M(h) denote the minimum size of a height balanced tree of height h.

- Observe that M(0) = 1, M(1) = 2.
- In general $M(h) \ge 1 + M(h-1) + M(h-2)$
 - one subtree of the root is a height balanced tree of height h-1
 - other subtree is height balanced with height at least h-2
- So $M(h) \ge 2M(h-2)$
- Inductive argument $\implies M(h) \ge 2^{h/2}$.

Properties of Height Balanced Trees

Proposition

Suppose *T* is a height balanced tree of height *h*. Then *T* has $n \ge 2^{h/2}$ vertices.

Consequences.

If *T* is a height balanced tree with *n* vertices, then its height *h* satisfies $h \le 2\log n$

- \implies CONTAINS(*x*) takes time $O(\log n)$
- \implies ADD(x) takes time $O(\log n)$
- \implies REMOVE(*x*) takes time $O(\log n)$

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced **for any sequence of operations performed**.

- No one is *forcing* us to keep the tree structure determined by our ADD/REMOVE operations
 - there are many valid BSTs that store the same collection of elements!
- Starting from a balanced tree, ADD(*x*) may introduce imbalance.
- If imbalance is introduced try to fix it:
 - find closest unbalanced vertex to *x* and correct its balance
 - look for other imbalance and correct it

For next time. Think about how you could implement this strategy.

- Where could imbalance occur? And how much?
- What *local* operations can fix the imbalance?
- What is the worst-case running time of restoring balance?

Next Time: Sorting

- Finishing Balanced BSTs
- The Sorting Task
- Efficient Sorting by Divide and Conquer

Scratch Notes