

Lecture 6: Data Structures III

COMP526: Efficient Algorithms

Updated: October 22, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Third Quiz, due Friday
	- *•* Similar format to before
	- *•* Covers fundamental data structures (Lectures 4–6)
	- *•* Quiz is **closed resource**
		- *•* No books, notes, internet, etc.
		- *•* Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment (Draft) Posted Todo
	- *•* Due Wednesday, 13 November
- 3. Attendance Code:

787201

Meeting Goals

- *•* Finish up heaps
	- *•* Give an efficient array-backed PRIORITYQUEUE
- *•* Introduce two more ADTs:
	- *•* ORDEREDSET
	- *•* MAP
- *•* Introduce binary search trees
- *•* Discuss balanced binary search trees

Heaps

Last Time: Priority Queues and Heaps

Priority Queues, Formally

- *• S* is the state of the queue, initially $S = \emptyset$
- $\left[\bullet\right]$ *S*. INSERT(*x*, *p*(*x*)) : *S* = $x_0x_1 \cdots x_ix_{i+1} \cdots x_{n-1} \mapsto$ $x_0 x_1 \cdots x_i x x_{i+1} \cdots x_{n-1}$
	- where $p(x_i) \leq p(x)$ $p(x_{i+1})$
- \cdot *S.MIN()*: returns x_0 where $S = x_0 x_1 \cdots x_{n-1}$
- S .REMOVEMIN(): $xS \rightarrow S$, returns *x* [

- *•* INSERT via BUBBLEUP procedure
- *•* REMOVEMIN via TRICKLEDOWN procedure

Ollogn) steps

Last Time: Priority Queues and Heaps

Priority Queues, Formally

Heap Implementation

- *• S* is the state of the queue, initially $S = \emptyset$
- *S.INSERT* $(x, p(x))$: *S* = $x_0x_1 \cdots x_ix_{i+1} \cdots x_{n-1} \rightarrow$ $x_0 x_1 \cdots x_i x x_{i+1} \cdots x_{n-1}$
	- where $p(x_i) \leq p(x)$ $p(x_{i+1})$
- $S.MIN()$: returns x_0 where $S = x_0 x_1 \cdots x_{n-1}$
- *S.REMOVEMIN():* $xS \rightarrow S$ *,* returns *x*

- *•* INSERT via BUBBLEUP procedure
- *•* REMOVEMIN via TRICKLEDOWN procedure
- *•* **Issue:** using NODEs incurs overhead
	- locality of reference
	- *•* storing additional references

Question. How can we represent heaps as arrays?

PollEverywhere Question

Suppose a vertex is assigned a label *i >* 0 in this numbering of the vertices. What is the label of *i*'s parent in the labeling?

pollev.com/comp526

A Clue: Number the Vertices

• If $i > 0$, then *i*'s parent has index $[(i-1)/2]$

A Clue: Number the Vertices

Relationships:

- If $i > 0$, then *i*'s parent has index $[(i-1)/2]$
- *• i*'s left child has index 2*i +*1
- *• i*'s right child has index 2*i +*2

Arrays as Heaps

Associate numbering of tree vertices as array indexes!

Complete binary tree representation

Example: Array BUBBLEUP

We can apply heap procedures directly to the array without reference to the tree itself!

- *•* If *i >* 0, then *i*'s parent has index $[(i-1)/2]$
- *• i*'s left child has index 2*i +*1
- *• i*'s right child has index 2*i +*2

 n_{in} index

11: **end procedure**

Example: Array BUBBLEUP

We can apply heap procedures directly to the array without reference to the tree itself!

- *•* If *i >* 0, then *i*'s parent has index $\lfloor (i-1)/2 \rfloor$
- *• i*'s left child has index 2*i +*1
- $$
- 1: **procedure** INSERT(p)
- 2: $v \leftarrow$ new vertex storing *p*
3: $u \leftarrow$ first vtx with < 2 chil
- 3: $u \leftarrow$ first vtx with < 2 children
4: add *v* as *u*'s child
- 4: add *v* as *u*'s child
- 5: PARENT(*v*) ← *u*
6: **while** value(*v*) < *i*
- 6: **while** $value(v) < value(u)$ and $u \neq \perp$ **do**
7: **SWAP**($value(v) \cdot value(u)$)
	- 7: SWAP(*value*(*v*),*value*(*u*))
- 8: $v \leftarrow u$

9:
$$
u \leftarrow \text{PARENT}(v)
$$

- 10: **end while**
- 11: **end procedure**

Array Backed Operations

Using arrays, we can define INSERT and REMOVEMIN much more cleanly!

- 1: **procedure** INSERT(p) 2: $i \leftarrow n$ \triangleright *n* is heap size 3: $a[i] \leftarrow p$ 4: $n \leftarrow n+1$ 5: $j \leftarrow \lfloor (i-1)/2 \rfloor$ $\Rightarrow j$ is *i*'s parent 6: **while** $i > 0$ and $a[i] < a[j]$ **do**
7: SWAP(*a, i, i*) 7: SWAP(*a*,*i*,*j*) 8: $i \leftarrow j$
9. $i \leftarrow j$ 9: $j \leftarrow \lfloor (i-1)/2 \rfloor$
10: **end while** end while 11: **end procedure** 1: **procedure** REMOVEMIN 2: $m \leftarrow a[0]$ 3: $a[0] \leftarrow a[n-1]$ 4: $n \leftarrow n-1$ 5: $i \leftarrow 0$
6: $i \leftarrow a$ 9: $i \leftarrow j$
10: $i \leftarrow j$
	- 6: $j \leftarrow \text{argmin} \{a[2i+1], a[2i+2]\}$
7: **while** *i < n* and *a*[*i*] > *a*[*i*] **do** 7: **while** $j < n$ and $a[i] > a[j]$ **do** 8: SWAP(*a, i, i*) 8: SWAP(*a*,*i*,*j*) 10: $j \leftarrow \arg \min \{a[2i+1], a[2i+2]\}$
11: **end while** end while $j \leftarrow \text{argm}$
 $j \leftarrow \text{argm}$
 $j \leftarrow \text{prevalue}$
 $j \leftarrow \text{prevalue}$
 $j \leftarrow \text{prevalues}$
 $j \leftarrow \text{prevalues}$
 $j \leftarrow \text{prevalues}$
 $j \leftarrow \text{prevalues}$
	- 12: **return** *m*
	- 13: **end procedure**

Both of these operations still complete after *O*(log*n*) iterations

• very little overhead, since only array operations are used!

Ordered Sets and Maps

Adding Order to Elements ding Orde
tion. What may
Answer: Order!
more ADT with

Question. What made our operations on heaps efficient?

Two more ADT with **ordered** elements:

• **Answer:** Order! We can order/compare priorities.
 ro more ADT with **ordered** elements:
 ered Sets store a collection
 **of <u>distinct</u> elements from an

red universe. Ordered Sets** store a collection (set) of *distinct* elements from an ordered universe.

- *•* CONTAINS(*x*) check if the set contains $x' = x$ and return x'
- *•* ADD(*x*) add *x* to the set if *x* was not present
- REMOVE (x) remove *x* if *x* was present

Adding Order to Elements

Question. What made our operations on heaps efficient?

• **Answer:** Order! We can order/compare priorities.

Two more ADT with **ordered** elements:

Ordered Sets store a collection (set) of *distinct* elements from an ordered universe. Vhat made our operations on
 $x: \text{Order! We can order}/\text{compa}$

DT with **ordered** elements:

store a collection $\begin{array}{c}\text{Map} \\ \text{for } t \text{ elements from an} \\ \text{or } t = 0. \end{array}$
 $x \text{ to the set if } x \text{ was not} \\ \text{or } x \text{ is the set of } x \text{ was present}$

• CONTAINS(*x*) check if the set contains $x' = x$ and return x'

a[k] \leftarrow V

 $ATKJ$

- *•* ADD(*x*) add *x* to the set if *x* was not present
- $REMOVE(x)$ remove *x* if *x* was present

Maps*^a* store a collection of *values* with associated ordered *keys* with array-like access. ompai
ts:
<mark>Maps</mark>
with a

- \bullet , $PUT(k, v)$ set the value associated with key *k* to *v*
- $GET(k)$ return the value associated with key *k*
- *•* REMOVE(*k*) remove the pair associated with *k*
- *•* CONTAINS(*k*) check if the map contains a value associated with *k*

*^a*Aka: associative arrays, dictionaries (Python dict), symbol table

Ordered Sets vs Maps

Ordered Sets

- *•* CONTAINS(*x*) check if the set contains $x' = x$ and return x'
- $ADD(x)$ add *x* to the set if *x* was not present
- REMOVE (x) remove *x* if *x* was present

Maps

- $PUT(k, v)$ set the value associated with key *k* to *v*
- $GET(k)$ return the value associated with key *k*
- $REMOVE(k)$ remove the pair associated with *k*
- *•* CONTAINS(*k*) check if the map contains a value associated with *k*

PollEverywhere Question

If we are given an ORDEREDSET implementation, how could we use it to implement a MAP? **Ordered Sets vs Maps**

Ordered Sets Maps
 $\frac{1}{\text{normals}}$
 $\frac{1}{\text{normals}}$

Ordered Sets vs Maps Ordered Sets vs Maps
 $\begin{array}{|c|l|}\n\hline\n\text{ordered Sets} & \text{Maps} \\
\hline\n\text{contains } x' = x \text{ and return } x' & \text{with key } x \text{ to } v \\
\hline\n\text{Then } \text{How } x \text{ is the value associated with } k \\
\hline\n\text{REMOVE}(x) \text{ remove } x \text{ if } x \text{ was present} \\
\hline\n\text{Many to } y & \text{otherwise.} \\
\hline\n\text{REMOVE}(x) \text{ remove } x \text{ if } x \text{ was present} \\
\hline\n\text{Many to } y & \text{otherwise.} \\
\hline$

Ordered Sets

- *•* CONTAINS(*x*) check if the set contains $x' = x$ and return x'
- *•* ADD(*x*) add *x* to the set if *x* was not present
- *•* REMOVE(*x*) remove *x* if *x* was present

Maps

- *•* PUT(*k*,*v*) set the value associated with key *k* to *v*
- GET(k) return the value associated with key *k*
- *•* REMOVE(*k*) remove the pair associated with *k*
- *•* CONTAINS(*k*) check if the map contains a value associated with *k*

Maps via Ordered Sets

- *•* Create an ordered set that stores pairs (k, v) $(+\mu \rho \mu)$
- *•* Compare (*k, v*) (*k*) *v*(*k*) *v*) ⇔ <u>*k* ≤ *k*²</u>
- *•* CONTAINS, REMOVE are same
- \overline{f} To PUT (k, v) , use REMOVE $((k, \cdot))$ then $ADD((k, v))$ 3
- *•* To GET(*k*), use $(k, v) \leftarrow$ CONTAINS $((k, \cdot))$ and return *v* **Aaps**
 Maps

• PUT(k _N) set the value association

in the value association

• GET(k) return the value association

• GET(k) return the value association

• REMOVE(k) remove the pair

• CONTAINS(k) check if

Ordered Sets via Arrays

ORDEREDSETs can be implemented by arrays:

- **•** Maintain a sorted array *a* = [x_0 , x_1 ,...,, x_n] with each $x_i \le x_{i+1}$.
- ADD(*x*) and REMOVE(*x*) implemented in $\Theta(n)$ worst case time
	- To ADD find index *i* such that $x_i \leq x \leq x_{i+1}$
	- Shift elements x_i with $j \geq i+1$ to next index
		- This uses $\Theta(n)$ time
	- Set $a[i+1] \leftarrow x$

Ordered Sets via Arrays

ORDEREDSETs can be implemented by arrays:

- Maintain a sorted array $a = [x_0, x_1, \ldots, x_n]$ with each $x_i \le x_{i+1}$.
- ADD(*x*) and REMOVE(*x*) implemented in $\Theta(n)$ worst case time mented in Θ
at $x_i \le x < x_{i+1}$
1 to next index
	- To ADD find index *i* such that $x_i \leq x \leq x_{i+1}$
	- Shift elements x_i with $j \geq i+1$ to next index
		- This uses $\Theta(n)$ time
	- Set $a[i+1] \leftarrow x$

Question. How can we implement CONTAINS(*x*) more quickly?

Efficient Search ficient !
Binary Search:
Start at the *mid*

Idea. Binary Search:

- *•* Start at the *middle index j*
	- $x \leq a[j] \implies \text{index of } x \text{ must}$ be $i \leq j$
	- *•* otherwise *i > j*
- *•* Apply procedure to remaining interval with half excluded
	- *•* compare *x* to midpoint of remaining interval
	- *•* eliminate half of the interval
- *•* Repeat

Efficient Search

Idea. Binary Search:

• Repeat

1 3

2 10

 θ 2

- *•* Start at the *middle index j*
	- $x \leq a[j] \implies \text{index of } x \text{ must}$ be $i \leq j$
	- *•* otherwise *i > j*
- *•* Apply procedure to remaining interval with half excluded **Example 12**
 Example 12
 CALC 11 COMPTE 12 CALC 11
 CALC 12
 CALC 12

	- *•* compare *x* to midpoint of remaining interval

4 31

5 34

6 39

7 42

• eliminate half of the interval

> 3 28

1: **procedure** BINARYSEARCH(x) 2: $i \leftarrow 0, k \leftarrow n-1$
3: $i \leftarrow |(i+k)/2|$ 3: $\overline{j} \leftarrow [(\overline{i} + \overline{k})/2]$
4: while $i < i$ do 4: **while** $i < j$ **do**
5: \int **if** $x < a[i]$ **i** 5: **if** $x \le a[j]$ **then**
6: **i** $k \leftarrow i$ 6: $k \leftarrow j$
7: **else** 7: **else** 8: $i \leftarrow j$
9: **end if** 9: **end if** 10: **end while** 11: **return** *i* 12: **end procedure** 8 51 9 63 10 70 11 74 12 82 \ddagger 87 14 $\overline{J1}$ 15 স্ত left endot interval
of active interval
continue BINARYSEARCH(x)
 $\begin{matrix} i-0,k-n-1 \\ i-(i+k)/2 \end{matrix} \leftarrow \begin{matrix} r_q \\ r_r \\ r_r \end{matrix}$ I $find(72)$ **Efficient Search**
 a. Binary Search:
 a. Binary Search:
 $\mathbf{x} \leq a[j] \Rightarrow \text{ index of } x \text{ must } 2: \begin{array}{c} 1: \text{ procedure } \text{BINANSFARCH(X)} \\ \text{ob } \text{OcY}^{\dagger} \end{array}$
 $\mathbf{v} \leq \mathbf{x} \leq a[j] \Rightarrow \text{ index of } x \text{ must } 3: \begin{array}{c} 1: \text{ procedure } \text{BINARY SLARCH(X)} \\ \text{ob } \text{E}[i] \neq$

Efficiency of Binary Search

PollEverywhere

What is the (worst case) running time of BINARYSEARCH on an array of length *n*?

pollev.com/comp526

- 1: **procedure** BINARYSEARCH(x)
- 2: $i \leftarrow 0, k \leftarrow n-1$
- 3: $j \leftarrow |(i+k)/2|$
- 4: while $i < j$ do
- 5: **if** $x \le a[i]$ **then**

6:
$$
k \leftarrow j
$$

- 7: **else**
- 8: $i \leftarrow j$
- 9: **end if**
- 10: **end while**
- 11: **return** *i*
- 12: **end procedure**

Efficiency of Binary Search

Proposition

The worst-case running time of BINARYSEARCH is $\Theta(\log n)$.

- 1: **procedure** BINARYSEARCH(x)
- 2: $i \leftarrow 0, k \leftarrow n-1$
- 3: $j \leftarrow |(i+k)/2|$
- 4: while $i < j$ do
- 5: **if** $x \le a[i]$ **then**

6:
$$
k \leftarrow j
$$

- 7: **else**
- 8: $i \leftarrow j$
- 9: **end if**
- 10: **end while**
- 11: **return** *i*
- 12: **end procedure**

Efficiency of Binary Search

Proposition

The worst-case running time of BINARYSEARCH is $\Theta(\log n)$. \overline{a}

Proof.

- **•** Consider the value of $k-i$.
- After ℓ iterations of the loop, have $k - i \leq \frac{n}{2^{\ell}}$ (induction)
- Termination when $k i \leq 1$
- $\ell = \lceil \log n \rceil + 1 \implies \frac{n}{2^{\ell}} \leq 1$ log n
sounded up
- **procedure** BINARYSEARCH(x) 2: $i \leftarrow 0, k \leftarrow n-1$ 3: $j \leftarrow |(i+k)/2|$ 4: while $i < j$ do 5: **if** $x \le a[i]$ **then** 6: $k \leftarrow j$
7: **else** 7: **else** 8: $i \leftarrow j$ 9: **end if** 10: **end while** 11: **return** *i* 12: **end procedure** size of active interval

Making All Operations Efficient?

A Nagging Question

For ORDEREDSETs, we can perform all operations in *o*(*n*) time? $\frac{o(n)}{n}$

- *•* Array implementation only gives CONTAINS in *O*(log*n*) time
- Other operations are $\Theta(n)$
- *•* This seems harder than efficient PRIORITYQUEUE as elements can be added *and* removed from anywhere in the data structure

Making All Operations Efficient?

A Nagging Question

For ORDEREDSETs, we can perform all operations in *o*(*n*) time?

- *•* Array implementation only gives CONTAINS in *O*(log*n*) time
- Other operations are $\Theta(n)$
- *•* This seems harder than efficient PRIORITYQUEUE as elements can be added *and* removed from anywhere in the data structure

Up next: A solution in two parts

- 1. Binary Search Trees
- 2. Balancing Binary Trees

Binary Search Trees

Binary Search Tree Definition

Definition

Suppose *T* is a binary tree and every vertex *v* in *T* has an associated value. We say *T* is a **binary search tree** (**BST**) if for every vertex (value) *v*: $\frac{1}{2}$ tree and eventure search $\frac{1}{2}$ ee Defir
and every verse
search tree -2 children

1. every *left descendant u* satisfies $u \le v$,

2. every *left descendant w* satisfies $u \le v$,
2. every *right descendant w* satisfies $w \ge v$.

BST Search

Question

Given a BST *T*, how can we search for a value *x* in *T*?

BST Search

Question

BST Search

Ouestion

Given a BST *T*, how can we search for a value *x* in *T*?

- 1: **procedure** CONTAINS(*x*)
- 2: $v =$ tree root
- 3: **while** $v \neq x$ and $v \neq \perp$ **do**
- 4: **if** $x < v$ **then**
- 5: $v \leftarrow \text{LEFTCHILD}(v)$
- 6: **else**
- 7: $v \leftarrow \text{RIGHTCHILD}(v)$
- 8: **end if**
- 9: **end while**
- 10: **return** ν
- 11: **end procedure**

PollEverywhere

What is the (worst case) running time of CONTAINS on a tree with *n* vertices?

pollev.com/comp526

BST CONTAINS **Efficiency**

Observation

The (worst-case) running time of CONTAINS on \int is $\Theta(h)$ where *h* is the **height** of *T*

• *h* is the length of the longest path from root to any leaf in *T*

The height of *T* can be: $\sqrt{\alpha}$

- *•* As small as log*n*
- As large as $n-1$

The Moral

The efficiency of CONTAINS depends on the structure of *T*.

Question

Question

How could we ADD(19) to the following BST so it remains a BST?

Observation. To $ADD(x)$, we should add a new vertex wherever the CONTAINS(*x*) execution fails to find *x*.

Adding in Pseudocode

Adding in Pseudocode

PollEverywhere Question

Describe a sequence of ADD(*x*) operations starting from an empty BST such that every operation takes $\Omega(n)$ time.

pollev.com/comp526

Adding in Pseudocode

Question

How could we remove an element from a BST?

Question

How could we remove an element from a BST?

Case 1: A leaf. Just remove it!

Question

How could we remove an element from a BST?

Case 2: A vertex *v* **with single child**. Splice! Set *v*'s child to be its parent's child.

So Far. . .

. . . we've implemented

- *•* CONTAINS(*x*)
- $ADD(x)$
- *•* REMOVE(*x*)

for ORDEREDSETs.

But we haven't improved *efficiency*

- All of these operations can cost as much as $\Theta(n)$
	- *•* efficiency depends on previous operations performed!

Idea. We can *restructure* BSTs.

- *•* Goal: ensure that the BST has small **height**.
- *•* After each update, check and update tree structure.
	- *•* maintain BST property
	- *•* updates performed efficiently

Balanced Binary Trees

Distinguishing the Good from the Bad

Height Balanced Trees

Definition (Left and Right Height)

Let ν be a vertex in a tree. We define:

- $h(\perp) = -1$
- $h(v) = 1 + \max(h(\text{LEFTCHILD}(v)), h(\text{RIGHTCHILD}(v)))$ **ight Balanced Trees**

mition (Left and Right Height)

be a vertex in a tree. We define:
 $h(\perp) = -1$
 $h(\nu) = 1 + \max(h(\text{LEFTCHILD}(\nu)), h(\text{RIGHTCHILD}(\nu)))$
 $h_{\ell}(\nu) = h(\text{LEFTCHILD}(\nu))$
 $h_{\ell}(\nu) = h(\text{RIGHTCHILD}(\nu))$
 \downarrow
 $h_{\ell}(\nu) = h(\text{RIGHTCHILD}(\nu))$ **d Trees**

tht Height)

We define:

TCHILD(*v*)), *h*(RIGHTCI

(*v*))

(15)

(15)

(12)

(18) be a vertex in a tree. We defin
 $h(L) = -1$
 $h(u) = 1 + max(h(LEFTCHILD(u)))$
 $h_r(v) = h(RIGHTCHILD(v))$
 $h_r(v) = h(RIGHTCHILD(v))$
 $h_r(v) = h(RIGHTCHILD(v))$

12

 \sim 0 \sim

15

17

 $\ddot{\mathbf{0}}$

20

22

25

O

18

• $h_r(v) = h(RIGHTCHILD(v))$

5

6

3) (7

10

 $Z_{(10)}$

to facturest

leaf

2 descendent

I

Height Balanced Trees

Definition (Left and Right Height)

Let ν be a vertex in a tree. We define:

- $h(\perp) = -1$
- $h(v) = 1 + \max(h(\text{LEFTCHILD}(v)), h(\text{RIGHTCHILD}(v)))$
- $h_{\ell}(v) = h(\text{LEFTCHILD}(v))$
- $h_r(v) = h(RIGHTCHILD(v))$

Def. (Height Balanced)

We call a tree **height balanced** if for every vertex v , $|h_e(v) - h_r(v)| \leq 1$.

Properties of Height Balanced Trees

Proposition

Suppose *T* is a height balanced tree of height *h*. Then *T* has $n \ge 2^{h/2}$ vertices. $\overline{n \geq 2^{h/2}}$

Properties of Height Balanced Trees

Proposition

Suppose *T* is a height balanced tree of height *h*. Then *T* has $n \ge 2^{h/2}$ vertices.

Proof.

Let *M*(*h*) denote the minimum size of a height balanced tree of height *h*.

- Observe that $M(0) = 1$, $M(1) = 2$.
- In general $M(h) \ge 1 + M(h-1) + M(h-2)$
	- one subtree of the root is a height balanced tree of height $h-1$
	- other subtree is height balanced with height at least $h 2$
- So $M(h) \ge 2M(h-2)$
- Inductive argument $\Rightarrow M(h) \ge 2^{h/2}$.

Properties of Height Balanced Trees

Proposition

Suppose *T* is a height balanced tree of height *h*. Then *T* has $n \ge 2^{h/2}$ vertices.

Consequences.

If *T* is a height balanced tree with *n* vertices, then its height *h* satisfies $h \leq 2 \log n$ Propositio
Suppose T
vertices.
Conseque
If T is a height $\sqrt{h \leq 2 \log n}$
 \implies CONTA

- \implies CONTAINS(*x*) takes time *O*(log *n*)
- \implies ADD(*x*) takes time *O*(log *n*)
- $REMOVE(x)$ takes time $O(log n)$

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced **for any sequence of operations performed**.

- *•* No one is *forcing* us to keep the tree structure determined by our ADD/REMOVE operations
	- *•* there are many valid BSTs that store the same collection of elements!

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced **for any sequence of operations performed**.

- *•* No one is *forcing* us to keep the tree structure determined by our ADD/REMOVE operations
	- *•* there are many valid BSTs that store the same collection of elements!
- *•* Starting from a balanced tree, ADD(*x*) may introduce imbalance.
- *•* If imbalance is introduced try to fix it:
	- *•* find closest unbalanced vertex to *x* and correct its balance
	- *•* look for other imbalance and correct it

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced **for any sequence of operations performed**.

- *•* No one is *forcing* us to keep the tree structure determined by our ADD/REMOVE operations
	- *•* there are many valid BSTs that store the same collection of elements!
- *•* Starting from a balanced tree, ADD(*x*) may introduce imbalance.
- *•* If imbalance is introduced try to fix it:
	- *•* find closest unbalanced vertex to *x* and correct its balance
	- *•* look for other imbalance and correct it

For next time. Think about how you could implement this strategy.

- *• Where* could imbalance occur? And how much?
- *•* What *local* operations can fix the imbalance?
- *•* What is the worst-case running time of restoring balance?

Next Time: Sorting

- *•* Finishing Balanced BSTs
- *•* The Sorting Task
- *•* Efficient Sorting by Divide and Conquer

Scratch Notes