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Announcements

1. Second Quiz Open, due Friday |\' $4 pwr
* Similar format to before

* Covers asymptotic (Big-O) notation
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)
2. CampusWire —
* Use for discussion of material, questions about lectures, etc
* Public comments for matters related to module content &
administration
* https://campuswire.com/p/GBB00CD7A, Code: 4796

3. Attendance Code: 160 521
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Meeting Goals

* Introduce Programming Assignment 1: Prefix Reversal Sorting
¢ Discuss the Queue ADT and implementations
* Introduce the Priority Queue ADT

* Introduce the heap data structure
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Programming
Assighment 1



Non-Standard Sorting

Fundamental Task: sorting a list of elements from smallest to largest
vy
[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

Typical basic (unit cost) operations:
* compare two elements to see which is larger

* swap two elements in the array
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Non-Standard Sorting

Fundamental Task: sorting a list of elements from smallest to largest

[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

Typical basic (unit cost) operations:
— compare two elements to see which is larger
* swap two elements in the array
Non-standard sorting models:
* natural in contexts other than sorting arrays
* e.g., sorting physical objects with physical
constraints

* compare and swap may not be elementary
operations

51/129]



Sorting with Prefix Reversals

Basic Operation: Prefix Reversal
* Reverse the elements up to index i in a list/array

* For example
0 1 1|3 u«

(1]2]3]«]5] — [3]2]1]4]5]

é—-
fouised

* Natural operation for
* DNA
¢ stacks of physical objects

Basic Algorithmic Question: Given an array a of length n, what is the
fewest number of prefix reversal operations necessary to sort a?
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Your Task

Input: an array (1ist) a of numbers

between 1 and 7.

Output: the array p of prefix reversals that

when applied to a will result in a sorted

array.

Goal: sort each array a using the fewest .

possible prefix rgyergalsg ¢ 0 \A‘?A(’ A 3) | ) 2]
Example: Sort [é , 1, 3, @]

J
YO, Seove: 3
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Your Task

Input: an array (1ist) a of numbers
[EEREEILIL el PollEverywhere Question
Output: the array p of prefix reversals that

when applied to a will result in a sorted S‘Eiartglg féonéth«;{ arr%y

array.
Goal: sort each array a using the fewest what is the reéultlng array
possible prefix reversals. after per forming the
Example: Sort [4, 1, 3, 2] following prefix reversals?
) ) E2§> 5 , 3]
4 3 §\ 6\ 2 9o
$346 |24
2\ 6 H’S s
>

XYLl23s pollev.com/comp526
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More Specifically

Array Structures for input
1. random permutation a is uniformly random shuffling of numbers from 1 to n

2. tritonic for 0 < a < b < n the values of a are increasing from indices 0 to a,
decreasing from indices a to b, then increasing from indices bto n— 1.

3. binary a’s values are all 0 or 1

4. ternary a’s values are all 0, 1, or 2

For each structure you will define a function that generates a prefix
reversal sequence that sorts arrays with the given structure.

W
— ] >
4 -

[|
T '
Xadex b w-t
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More Specifically

Array Structures for input
1. random permutation a is uniformly random shuffling of numbers from 1 to n

2. tritonic for 0 < a < b < n the values of a are increasing from indices 0 to a,
decreasing from indices a to b, then increasing from indices bto n— 1.

3. binary a’s values are all 0 or 1

4. ternary a’s values are all 0, 1, or 2
For each structure you will define a function that generates a prefix
reversal sequence that sorts arrays with the given structure.
Scoring:

* your program must correctly sort all arrays

* points for minimizing the number of prefix reversals over all

challenge arrays
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More Specifically

Array Structures for input
1. random permutation a is uniformly random shuffling of numbers from 1 to n

2. tritonic for 0 < a < b < n the values of a are increasing from indices 0 to a,
decreasing from indices a to b, then increasing from indices bto n— 1.

3. binary a’s values are all 0 or 1

4. ternary a’s values are all 0, 1, or 2
For each structure you will define a function that generates a prefix
reversal sequence that sorts arrays with the given structure.
Scoring:

* your program must correctly sort all arrays

* points for minimizing the number of prefix reversals over all

challenge arrays

Suggestion: it is possible to sort any array of length n with fewer than
2n prefix reversals

¢ start by implementing a simple baseline procedure to sort all arrays
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Queues



From Last Time

* StackADT — Pbstact Doda Tiype

¢ linked list implementation
° array implementation

* Amortized analysis
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The Queue ADT Froa®

%
ueues, Intuitivel 0
goal: to store a colyection of \K— %\ \%\ %
elements ’[‘
* elements arranged asin a N —(l(r i+
queue at Tesco QLO(M' a be
* new people enter the back of hase (‘UMO\IL&

the queue

* only the person at the front of
the queue can be removed
(serviced)

First In, First Out (FIFO) priority
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The Queue ADT o

CANCEO*

Queues, Intuitively Queues, Formally
Goal: to store a collection of * Sis the state of the qlieue,
elements initially $ = @
* elements arranged as in a o S.ENQUEUE(%) @_.@
queue atTesco e S.FRONT() : returns x;,_; where
* new people enter the back of S= XX -+ Xp1
the queue e S.DEQUEUE() : Sx— §, returns
* only the person at the front of X -
the queue can be removed -

e S.EMPTY() returns

(serviced) TRUE < S=&

First In, First Out (FIFO) priority
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The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements

* elements arranged asin a
queue at Tesco

* new people enter the back of
the queue

* only the person at the front of
the queue can be removed
(serviced)

First In, First Out (FIFO) priority
Tons of Applications!
* Scheduling
* Messaging

Queues, Formally

Sis the state of the queue,
initially S= @
S.ENQUEUE(x) : S— xS

S.FRONT() : returns x;_; where

S=Xpx1"" " Xp-1

S.DEQUEUE() : Sx— §, returns

X

S.EMPTY() returns
TRUE < S=9
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List Backed Queues

Idea

e Store each element in a NODE
¢ Store references to NODE:

* head at the front of the queue
¢ tail at the back of the queue

Node

Next
vl

Shlte o{- Qs

\

Nl_yf IJL\A ”e.‘*
”;*/I:J me/ <o) |

head

No
NE3 *
+adil

class LISTQUEUE
NODE head
NODE tail

1:

2

3

4: ] procedure ENQUEUE(x)
5: ‘ n<—new NODE

6: _ ndata—x

7 + tail.next — n

8 < tail—n

9 end procedure

10: | procedure DEQUEUE
11: n — head

12: head — n.next

13: return n.data

14: end procedure

15: end class
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List Backed Queues

Idea

e Store each element in a NODE
¢ Store references to NODE:

* head at the front of the queue
¢ tail at the back of the queue

Issues:
e Similar to linked list stack
implementation

* Locality of reference
* NODE memory overhead

class LISTQUEUE

NODE head

NODE tail

procedure ENQUEUE ()
n<—new NODE
n.data — x
tail.next — n
tail — n

end procedure

procedure DEQUEUE
n — head
head — n.next
return n.data

end procedure

: end class
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Array Backed Queues

Idea:

e Store elements in the stack in an
array

* Maintain indices of head and tail

o 1t 23 u s b3

2
@ldmbdl [ [ 11
YY)
\\Lct -Hk\

VATV
AP du()um

Ignores resizing/checking if full

class ARRAYQUEUE
a— new array, size n
head, tail — 0
procedure ENQUEUE(x)
altail]
tail — tait+ 1
end procedure
procedure DEQUQUE
head — head + 1
return alhead — 1]
11: end procedure
12: end class

—_
S
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Array Backed Queues

Idea:

e Store elements in the stack in an
array

* Maintain indices of head and tail

What is the problem here?
* What happens if we repeatedly call
* ENQUEUE(1)
* DEQUEUE()
* ENQUEUE(1)
* DEQUEUE()

[ I I W

2

e . A0

Ignores resizing/checking if full

1: class ARRAYQUEUE

2 a— new array, size n
3 head, tail — 0

4 procedure ENQUEUE(x)
5: altail] — x

6 tail — tail + 1

7 end procedure

8 procedure DEQUQUE
9 head — head +1
10: return alhead — 1]
11: end procedure

12: end class
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Array Backed Queues

Idea: Ignores resizing/checking if full
¢ Store elements in the stack in an 1: class ARRAYQUEUE
array 2 a < new array, size n
* Maintain indices of head and tail 3 head, tail — 0
4: procedure ENQUEUE(x)
5: altail] — x
The fix: 6: tail — tail+ 1 modn
e U reul 7 end procedure
se circular arrays 8 procedure DEQUQUE
¢ Perform index arithmetic modulo n 9 head — head +1 modn
(array size) 10: return alhead — 1 mod 7]
. 11: end procedure
¢ All operations are then O(1) 12 end class
* amortized O(1) time if resizing by
doubling size o | 22 4 5

QT
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Priority Queues



The (Min) Priority Queue ADT

Priority Queues, Intuitively
Goal: to store a collection of
elements

* Each element x has an
associated priority,

* New elements inserted with
prescribed priorities

* (Can access/remove element
with the minimum priority in
the collection
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The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially S= @
* Each element x has an * S.INSERT(Q)p(x)):S=
associated priority, p(x) |XoX1 - - - XiXj+] - Xp—1,—

e New elements inserted with XoXp -+ i X Xi 1"+~ Xn—1

prescribed priorities * where p(x;) < p(x) < p(Xi+1)
* S.MIN() : returns xp where

¢ Can access/remove element
with the minimum priority in S @xl " ¥n-1
the collection * S.REMOVEMIN() : xS— S,
returns x
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The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially S= @
* Each element x has an * S.INSERT(x, p(x)):S=
associated priority, p(x) XoX1* - XjXjt1* Xp—1

e New elements inserted with XoXp -+ Xi X Xjg1* " Xn—1

prescribed priorities * where p(x;) < p(x) < p(xi+1)
* S.MIN() : returns xp where

S= XXy -+ Xp-1

* (Can access/remove element
with the minimum priority in
the collection * SREMOVEMIN() : xS— S,

L returns x
Applications

¢ efficient sorting
* implementing “greedy” algorithms
* resource management

15/29



Naive Priority Queue Implementations

Array backed implementation

¢ Store element/priority pairs,
sorted by priority

* MIN and REMOVEMIN can be
implemented in Qg) time

® INSERT is G‘_)(_n) worst-case

* must shift elements around
X
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Naive Priority Queue Implementations

Array backed implementation Linked list backed implementation
¢ Store element/priority pairs, ¢ Store element/priority pairs,
sorted by priority sorted by priority
* MIN and REMOVEMIN can be * MIN and REMOVEMIN can be
implemented in O(1) time implemented in O(1) time
* [NSERT is ©®(n) worst-case * [NSERT i§®(n) worst-case
* must shift elements around * must find location to insert x
X

A0,
B —>®—> G O—>®

1 T

e ok Aol
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Naive Priority Queue Implementations

Array backed implementation Linked list backed implementation
¢ Store element/priority pairs, ¢ Store element/priority pairs,
sorted by priority sorted by priority
* MIN and REMOVEMIN can be * MIN and REMOVEMIN can be
implemented in O(1) time implemented in O(1) time
* [NSERT is ©®(n) worst-case * [NSERT is ©(n) worst-case
* must shift elements around ¢ must find location to insert x
X

Question. Can we perform all operations in o(n) time?
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Heaps



Binary Trees

A (rooted) binary tree consists of Y‘QOS\'

Oake

* Aset V of vertices —

e A distinguished vertex

g\
called the root 4&4& Cj,\c (4
¢ Each vertex has (possibly /

empty): ® [ ] ®
* left child \ / \ j
* right child e o o ®

* Non-root vertices have a
parent (J
e All vertices are
descendants of the root
Codes
e Vertices without children are leaves

* The height is the maximal distance from root to a leaf




Complete Binary Trees

A complete binary tree of height h is a binary tree in which:

¢ All vertices up to depth /2 — 2 have exactly two children
* At most one vertex at depth i — 1 has one child
¢ if v has children, then vertices to the left of v have two children

Wt
/\ 2 Q\L;léfc‘/\
A
2

IR

(e— W —

19/29



Properties of Complete Binary Trees

Suppose T is a complete binary tree of height h. Then the number 7 of
vertices of T satisﬁe
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Properties of Complete Binary Trees

Proposition

Suppose T is a complete binary tree of height s. Then the number 7 of
vertices of T satisﬁes Ay -QTQW\ ) o}

* The number of vertices at{depthjd < h—1 is 2¢
°* prove by induction on d
* There for the total number vertices up to depth h—1 is
”’=L+§+f}+"'+£}:1 750l

¢ prove formula by induction
e At depth £, the number of vertices is between 1 and 2"

Therefore, total 72 is between 2" = 7/ + 1 and 21 — 1 = ln’ +2h, O]
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Properties of Complete Binary Trees

Proposition

Suppose T is a complete binary tree of height h. Then the number 7 of
vertices of T satisfies 2" < n<2h*1 -1,

PollEverywhere Question

If a complete binary tree T has
nvertices, what is its height?

1. h=0()
2. h=0(ogn)
3. h=0(/n)
4. h=0(n)

pollev.com/comp526

20/29



Properties of Complete Binary Trees

Suppose T is a complete bi eight h. Then the number 7 of
vertices of T satisﬁeg 2l o]

PO C ere Que O
If a complete binary tree T ha Why?
nvertices, what is its height? 3\:\
1. h=0Q) 2" EN
2. h=0(ogn) | U«) £ \ogn
3. h=0(/7) ) (1 ; = h=0lo)
4. h=0(n) h 09 N\ »
Wk L /X
2 logn - | n e 2" = logw gl

L@Ww\ loyw £ R




Min Heaps

Definition
A heap is a complete binary tree T with the following properties:

* each vertex (node) has an associated value from an ordered set
¢ for each pair of values p and g we can compare p< q

¢ |[the value associated with each vertex v is smaller than the valu
associated with its children

1
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Inserting Into a Heap

Question
Given a heap T, how can we efficiently insert a new a value into 7 and
maintain the heap properties?

Example

How to insert the value 32
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Inserting Into a Heap

Question
Given a heap T, how can we efficiently insert a new a value into 7 and
maintain the heap properties?

Example

How to insert the value 32

@l@ Weap \J\o\u\'\W\
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“Bubble Up” Insert Procedure

1: procedure INSERT(p)

2 v — new vertex storing p —

3 u — first vtx with < 2 children —
4 add v as u's child

5: PARENT(V) < u

6 while value(v) < value() and u#1 do
7 SwaP(value(v), value(u))

8 vVe—1u

9 U — PARENT(V)

10: end while

11: end procedure

23/29



“Bubble Up” Insert Procedure
: procedure INSERT(p) PollEverywhere Question

U — new vertex storin . o
§p What is the running time of
INSERT if T has n vertices?

u — first vtx with < 2 children S:

add v as u’s child \o?
6 <°°)( 1. ©1)
while value(v) < value(u) and(u #1 )do 2. O(logn)
SwaP(value(v), value(u)) 3. O(Vn)
v—u 4. ©(n)

1
2
3
4
52 PARENT(V) «— u
6
7
8
9

U < PARENT(v)
10: end while
11: end procedure

pollev.com/comp526
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Qe -

<
“ ” SalL BTG
Bubble Up” Insert Procedu‘\f& T
1: procedure INSERT (p) i) PollEverywhere Question
2 & — new vertex storing p| . WO { 0
3: u — first vtx with < 2 children LIS .the TUnIns - tl_me ot
1k INSERT if T has n vertices?
4: add vas u's child GL\\
5: PARENT(V) < u L. e
6 while value(v) < value(x) and u#.L do 2. O(logn)
7 SwaP(value(v), value(u)) 3. O(v/n)

v—u 6 4. O(n)

u <— PARENT(v)
10:  end while Pest Cose € ux.ku\1

11: end procedure s D).
Why is running time ©(log n)?

b lcokions & Wight of deer
= @loyn) =
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Removing Min

Question
Given a heap T, how can we efficiently remove the minimum value
from T and maintain the heap properties?

Example
How to remove 2?
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Removing Min

Question
Given a heap T, how can we efficiently remove the minimum value
from T and maintain the heap properties?

How to remove 22

24/29



“Trickle Down” Remove Min Procedure

1: procedure REMOVEMIN

2 v < tree root

3 w — “last” vertex in tree

4 value(v) — value(w)

5: remove w from tree

6 u — smaller of v's children
7 while value(v) = value(w) and u#. do
8 SwaP(value(v), value(u))
9 vVe—1u

10: u — v's smaller child

11: end while

12: end procedure
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“Trickle Down” Remove Min Procedure

1: procedure REMOVEMIN PollEverywhere Question
2: —t t
v ‘r‘ee r,(,)o . What is the running time of
3 w — “last” vertex in tree .
REMOVEMIN if T has n
4 value(v) — value(w) .
vertices?
5: remove w from tree
6 u — smaller of v's children 1.6
7 while value(v) = value(w) and u#. do 2. O(logn)
8 Swapr(value(v), value(u)) 3. O(v/n)
9 v—u 4. ©(n)

10: u — v's smaller child
11: end while
12: end procedure

pollev.com/comp526
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“Trickle Down” Remove Min Procedure

1: procedure REMOVEMIN PollEverywhere Question
2: —t t
v ‘r‘ee r,(,)o . What is the running time of
3 w — “last” vertex in tree .
REMOVEMIN if T has n
4 value(v) — value(w) .
vertices?
5: remove w from tree
6 u — smaller of v's children 1.6
7 while value(v) = value(w) and u#. do 2. O(logn)
8 Swapr(value(v), value(u)) 3. O(v/n)
9 v—u , 4. O(n)
10: u — v's smaller child

11: end while
12: end procedure

Why is running time G(logn)?
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Heap Data Structures?

What elementary data structures can we use to represent heaps?

* Our tree representation was somewhat vague. ..
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Heap Data Structures?

Question
What elementary data structures can we use to represent heaps?

* Our tree representation was somewhat vague. ..

Natural Choice: Tree of Nodes
* Have a NODE data structure where NODE stores:

* data (value)
* reference to PARENT
¢ references to LEFTCHILD and RIGHTCHILD
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Heap Data Structures?

Question
What elementary data structures can we use to represent heaps?

* Our tree representation was somewhat vague. ..

Natural Choice: Tree of Nodes
* Have a NODE data structure where NODE stores:

* data (value)
* reference to PARENT
¢ references to LEFTCHILD and RIGHTCHILD

 Similar drawbacks to linked lists: data overhead, locality of
reference
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Heap Data Structures?

Question
What elementary data structures can we use to represent heaps?

* Our tree representation was somewhat vague. ..

Natural Choice: Tree of Nodes
* Have a NODE data structure where NODE stores:

* data (value)
* reference to PARENT
¢ references to LEFTCHILD and RIGHTCHILD

 Similar drawbacks to linked lists: data overhead, locality of
reference

Less Obvious Choice: Arrays!

* For next time: think about how you could represent a heap using
an array and minimal additional overhead!
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Heap Priority Queues

So far we heaps only store values from a ordered set
* A priority queue needs two data fields:
1. avalue x
2. apriority p(x)
* The priorities are from an ordered set
* To implement a priority queue with a heap

¢ each vertex v stores (refers to) x and p(x)
* the value value(v) is the priority p(x)
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Heap Priority Queues

So far we heaps only store values from a ordered set
* A priority queue needs two data fields:
1. avalue x
2. apriority p(x)
* The priorities are from an ordered set
* To implement a priority queue with a heap
¢ each vertex v stores (refers to) x and p(x)

* the value value(v) is the priority p(x)
The payoff
* INSERT in time ©(logn)
* REMOVEMIN in time O(logn)
e MIN in time ©(1)
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Next Time: More Trees!

* Searching Sorted Arrays
* Binary Search Trees
* Balanced Binary Trees
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Scratch Notes
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