11 1 m 1 m 1]]
00000000000000000F00000000FGCUCFO0O0E000000000060000iI000800000000000000000Fgogoo]
123456 78 910012131 1516 1716192021 2223242526 27 2829 2% 3132 33 74 35 36 37 38 39 40 41 42 41 44 45 46 47 49 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT R ERRRRR! B ERRRRRI [R ERRER AR R R RN R RN R RN R RN R R R RS AR R R R RRRRRERRERRRT!
22022222222222220222222220222
3333233333333333303333333[333333333[333]3
A44444444444400084844444444000044044444044440408444444444444844444444444044444]44
555555555555 5055555 055055555 MB550M5555505555555555555555555555555565555555555555§5

66666666 66M66366666666656R6666666

Lecture 5: Data Structures Il
COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 17, 2024 University of Liverpool

1/29

Announcements

1. Second Quiz Open, due Friday |\' $4 pwr
* Similar format to before

* Covers asymptotic (Big-O) notation
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)
2. CampusWire —
* Use for discussion of material, questions about lectures, etc
* Public comments for matters related to module content &
administration
* https://campuswire.com/p/GBB00CD7A, Code: 4796

3. Attendance Code: 160 521

2/29

Meeting Goals

* Introduce Programming Assignment 1: Prefix Reversal Sorting
¢ Discuss the Queue ADT and implementations
* Introduce the Priority Queue ADT

* Introduce the heap data structure

3/29

Programming
Assighment 1

Non-Standard Sorting

Fundamental Task: sorting a list of elements from smallest to largest
vy
[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

Typical basic (unit cost) operations:
* compare two elements to see which is larger

* swap two elements in the array

51/129]

Non-Standard Sorting

Fundamental Task: sorting a list of elements from smallest to largest

[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

Typical basic (unit cost) operations:
— compare two elements to see which is larger
* swap two elements in the array
Non-standard sorting models:
* natural in contexts other than sorting arrays
* e.g., sorting physical objects with physical
constraints

* compare and swap may not be elementary
operations

51/129]

Sorting with Prefix Reversals

Basic Operation: Prefix Reversal
* Reverse the elements up to index i in a list/array

* For example
0 1 1|3 u«

(1]2]3]«]5] — [3]2]1]4]5]

é—-
fouised

* Natural operation for
* DNA
¢ stacks of physical objects

Basic Algorithmic Question: Given an array a of length n, what is the
fewest number of prefix reversal operations necessary to sort a?

6/29

Your Task

Input: an array (1ist) a of numbers

between 1 and 7.

Output: the array p of prefix reversals that

when applied to a will result in a sorted

array.

Goal: sort each array a using the fewest .

possible prefix rgyergalsg ¢ 0 \A‘?A(’ A 3) |) 2]
Example: Sort [é , 1, 3, @]

J
YO, Seove: 3

@ 7129

Your Task

Input: an array (1ist) a of numbers
[EEREEILIL el PollEverywhere Question
Output: the array p of prefix reversals that

when applied to a will result in a sorted S‘Eiartglg féonéth«;{ arr%y

array.
Goal: sort each array a using the fewest what is the reéultlng array
possible prefix reversals. after per forming the
Example: Sort [4, 1, 3, 2] following prefix reversals?
)) E2§> 5 , 3]
4 3 §\ 6\ 2 9o
$346 |24
2\ 6 H’S s
>

XYLl23s pollev.com/comp526

7129

More Specifically

Array Structures for input
1. random permutation a is uniformly random shuffling of numbers from 1 to n

2. tritonic for 0 < a < b < n the values of a are increasing from indices 0 to a,
decreasing from indices a to b, then increasing from indices bto n— 1.

3. binary a’s values are all 0 or 1

4. ternary a’s values are all 0, 1, or 2

For each structure you will define a function that generates a prefix
reversal sequence that sorts arrays with the given structure.

W
—] >
4 -

[|
T '
Xadex b w-t

8/29

More Specifically

Array Structures for input
1. random permutation a is uniformly random shuffling of numbers from 1 to n

2. tritonic for 0 < a < b < n the values of a are increasing from indices 0 to a,
decreasing from indices a to b, then increasing from indices bto n— 1.

3. binary a’s values are all 0 or 1

4. ternary a’s values are all 0, 1, or 2
For each structure you will define a function that generates a prefix
reversal sequence that sorts arrays with the given structure.
Scoring:

* your program must correctly sort all arrays

* points for minimizing the number of prefix reversals over all

challenge arrays

8/29

More Specifically

Array Structures for input
1. random permutation a is uniformly random shuffling of numbers from 1 to n

2. tritonic for 0 < a < b < n the values of a are increasing from indices 0 to a,
decreasing from indices a to b, then increasing from indices bto n— 1.

3. binary a’s values are all 0 or 1

4. ternary a’s values are all 0, 1, or 2
For each structure you will define a function that generates a prefix
reversal sequence that sorts arrays with the given structure.
Scoring:

* your program must correctly sort all arrays

* points for minimizing the number of prefix reversals over all

challenge arrays

Suggestion: it is possible to sort any array of length n with fewer than
2n prefix reversals

¢ start by implementing a simple baseline procedure to sort all arrays

8/29

Queues

From Last Time

* StackADT — Pbstact Doda Tiype

¢ linked list implementation
° array implementation

* Amortized analysis

10/29

The Queue ADT Froa®

%
ueues, Intuitivel 0
goal: to store a colyection of \K— %\ \%\ %
elements ’[‘
* elements arranged asin a N —(l(r i+
queue at Tesco QLO(M' a be
* new people enter the back of hase (‘UMO\IL&

the queue

* only the person at the front of
the queue can be removed
(serviced)

First In, First Out (FIFO) priority

11/29

The Queue ADT o

CANCEO*

Queues, Intuitively Queues, Formally
Goal: to store a collection of * Sis the state of the qlieue,
elements initially $ = @
* elements arranged as in a o S.ENQUEUE(%) @_.@
queue atTesco e S.FRONT() : returns x;,_; where
* new people enter the back of S= XX -+ Xp1
the queue e S.DEQUEUE() : Sx— §, returns
* only the person at the front of X -
the queue can be removed -

e S.EMPTY() returns

(serviced) TRUE < S=&

First In, First Out (FIFO) priority

11/29

The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements

* elements arranged asin a
queue at Tesco

* new people enter the back of
the queue

* only the person at the front of
the queue can be removed
(serviced)

First In, First Out (FIFO) priority
Tons of Applications!
* Scheduling
* Messaging

Queues, Formally

Sis the state of the queue,
initially S= @
S.ENQUEUE(x) : S— xS

S.FRONT() : returns x;_; where

S=Xpx1"" " Xp-1

S.DEQUEUE() : Sx— §, returns

X

S.EMPTY() returns
TRUE < S=9

11/29

List Backed Queues

Idea

e Store each element in a NODE
¢ Store references to NODE:

* head at the front of the queue
¢ tail at the back of the queue

Node

Next
vl

Shlte o{- Qs

\

Nl_yf IJL\A ”e.‘*
”;*/I:J me/ <o) |

head

No
NE3 *
+adil

class LISTQUEUE
NODE head
NODE tail

1:

2

3

4:] procedure ENQUEUE(x)
5: ‘ n<—new NODE

6: _ ndata—x

7 + tail.next — n

8 < tail—n

9 end procedure

10: | procedure DEQUEUE
11: n — head

12: head — n.next

13: return n.data

14: end procedure

15: end class

12/29

List Backed Queues

Idea

e Store each element in a NODE
¢ Store references to NODE:

* head at the front of the queue
¢ tail at the back of the queue

Issues:
e Similar to linked list stack
implementation

* Locality of reference
* NODE memory overhead

class LISTQUEUE

NODE head

NODE tail

procedure ENQUEUE ()
n<—new NODE
n.data — x
tail.next — n
tail — n

end procedure

procedure DEQUEUE
n — head
head — n.next
return n.data

end procedure

: end class

12/29

Array Backed Queues

Idea:

e Store elements in the stack in an
array

* Maintain indices of head and tail

o 1t 23 u s b3

2
@ldmbdl [[11
YY)
\\Lct -Hk\

VATV
AP du()um

Ignores resizing/checking if full

class ARRAYQUEUE
a— new array, size n
head, tail — 0
procedure ENQUEUE(x)
altail]
tail — tait+ 1
end procedure
procedure DEQUQUE
head — head + 1
return alhead — 1]
11: end procedure
12: end class

—_
S

13/29

Array Backed Queues

Idea:

e Store elements in the stack in an
array

* Maintain indices of head and tail

What is the problem here?
* What happens if we repeatedly call
* ENQUEUE(1)
* DEQUEUE()
* ENQUEUE(1)
* DEQUEUE()

[I I W

2

e . A0

Ignores resizing/checking if full

1: class ARRAYQUEUE

2 a— new array, size n
3 head, tail — 0

4 procedure ENQUEUE(x)
5: altail] — x

6 tail — tail + 1

7 end procedure

8 procedure DEQUQUE
9 head — head +1
10: return alhead — 1]
11: end procedure

12: end class

13/29

Array Backed Queues

Idea: Ignores resizing/checking if full
¢ Store elements in the stack in an 1: class ARRAYQUEUE
array 2 a < new array, size n
* Maintain indices of head and tail 3 head, tail — 0
4: procedure ENQUEUE(x)
5: altail] — x
The fix: 6: tail — tail+ 1 modn
e U reul 7 end procedure
se circular arrays 8 procedure DEQUQUE
¢ Perform index arithmetic modulo n 9 head — head +1 modn
(array size) 10: return alhead — 1 mod 7]
. 11: end procedure
¢ All operations are then O(1) 12 end class
* amortized O(1) time if resizing by
doubling size o | 22 4 5

QT

13/29

Priority Queues

The (Min) Priority Queue ADT

Priority Queues, Intuitively
Goal: to store a collection of
elements

* Each element x has an
associated priority,

* New elements inserted with
prescribed priorities

* (Can access/remove element
with the minimum priority in
the collection

15/29

The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially S= @
* Each element x has an * S.INSERT(Q)p(x)):S=
associated priority, p(x) |XoX1 - - - XiXj+] - Xp—1,—

e New elements inserted with XoXp -+ i X Xi 1"+~ Xn—1

prescribed priorities * where p(x;) < p(x) < p(Xi+1)
* S.MIN() : returns xp where

¢ Can access/remove element
with the minimum priority in S @xl " ¥n-1
the collection * S.REMOVEMIN() : xS— S,
returns x

15/29

The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially S= @
* Each element x has an * S.INSERT(x, p(x)):S=
associated priority, p(x) XoX1* - XjXjt1* Xp—1

e New elements inserted with XoXp -+ Xi X Xjg1* " Xn—1

prescribed priorities * where p(x;) < p(x) < p(xi+1)
* S.MIN() : returns xp where

S= XXy -+ Xp-1

* (Can access/remove element
with the minimum priority in
the collection * SREMOVEMIN() : xS— S,

L returns x
Applications

¢ efficient sorting
* implementing “greedy” algorithms
* resource management

15/29

Naive Priority Queue Implementations

Array backed implementation

¢ Store element/priority pairs,
sorted by priority

* MIN and REMOVEMIN can be
implemented in Qg) time

® INSERT is G‘_)(_n) worst-case

* must shift elements around
X

16/29

Naive Priority Queue Implementations

Array backed implementation Linked list backed implementation
¢ Store element/priority pairs, ¢ Store element/priority pairs,
sorted by priority sorted by priority
* MIN and REMOVEMIN can be * MIN and REMOVEMIN can be
implemented in O(1) time implemented in O(1) time
* [NSERT is ©®(n) worst-case * [NSERT i§®(n) worst-case
* must shift elements around * must find location to insert x
X

A0,
B —>®—> G O—>®

1 T

e ok Aol

16/29

Naive Priority Queue Implementations

Array backed implementation Linked list backed implementation
¢ Store element/priority pairs, ¢ Store element/priority pairs,
sorted by priority sorted by priority
* MIN and REMOVEMIN can be * MIN and REMOVEMIN can be
implemented in O(1) time implemented in O(1) time
* [NSERT is ©®(n) worst-case * [NSERT is ©(n) worst-case
* must shift elements around ¢ must find location to insert x
X

Question. Can we perform all operations in o(n) time?

16/29

Heaps

Binary Trees

A (rooted) binary tree consists of Y‘QOS\'

Oake

* Aset V of vertices —

e A distinguished vertex

g\
called the root 4&4& Cj,\c (4
¢ Each vertex has (possibly /

empty): ® [] ®
* left child \ / \ j
* right child e o o ®

* Non-root vertices have a
parent (J
e All vertices are
descendants of the root
Codes
e Vertices without children are leaves

* The height is the maximal distance from root to a leaf

Complete Binary Trees

A complete binary tree of height h is a binary tree in which:

¢ All vertices up to depth /2 — 2 have exactly two children
* At most one vertex at depth i — 1 has one child
¢ if v has children, then vertices to the left of v have two children

Wt
/\ 2 Q\L;léfc‘/\
A
2

IR

(e— W —

19/29

Properties of Complete Binary Trees

Suppose T is a complete binary tree of height h. Then the number 7 of
vertices of T satisﬁe

20/29

Properties of Complete Binary Trees

Proposition

Suppose T is a complete binary tree of height s. Then the number 7 of
vertices of T satisﬁes Ay -QTQW\) o}

* The number of vertices at{depthjd < h—1 is 2¢
°* prove by induction on d
* There for the total number vertices up to depth h—1 is
”’=L+§+f}+"'+£}:1 750l

¢ prove formula by induction
e At depth £, the number of vertices is between 1 and 2"

Therefore, total 72 is between 2" = 7/ + 1 and 21 — 1 = ln’ +2h, O]

20/29

Properties of Complete Binary Trees

Proposition

Suppose T is a complete binary tree of height h. Then the number 7 of
vertices of T satisfies 2" < n<2h*1 -1,

PollEverywhere Question

If a complete binary tree T has
nvertices, what is its height?

1. h=0()
2. h=0(ogn)
3. h=0(/n)
4. h=0(n)

pollev.com/comp526

20/29

Properties of Complete Binary Trees

Suppose T is a complete bi eight h. Then the number 7 of
vertices of T satisﬁeg 2l o]

PO C ere Que O
If a complete binary tree T ha Why?
nvertices, what is its height? 3\:\
1. h=0Q) 2" EN
2. h=0(ogn) | U«) £ \ogn
3. h=0(/7)) (1 ; = h=0lo)
4. h=0(n) h 09 N\ »
Wk L /X
2 logn - | n e 2" = logw gl

L@Ww\ loyw £ R

Min Heaps

Definition
A heap is a complete binary tree T with the following properties:

* each vertex (node) has an associated value from an ordered set
¢ for each pair of values p and g we can compare p< q

¢ |[the value associated with each vertex v is smaller than the valu
associated with its children

1

21/29

Inserting Into a Heap

Question
Given a heap T, how can we efficiently insert a new a value into 7 and
maintain the heap properties?

Example

How to insert the value 32

22/29

Inserting Into a Heap

Question
Given a heap T, how can we efficiently insert a new a value into 7 and
maintain the heap properties?

Example

How to insert the value 32

@l@ Weap \J\o\u\'\W\

22/29

“Bubble Up” Insert Procedure

1: procedure INSERT(p)

2 v — new vertex storing p —

3 u — first vtx with < 2 children —
4 add v as u's child

5: PARENT(V) < u

6 while value(v) < value() and u#1 do
7 SwaP(value(v), value(u))

8 vVe—1u

9 U — PARENT(V)

10: end while

11: end procedure

23/29

“Bubble Up” Insert Procedure
: procedure INSERT(p) PollEverywhere Question

U — new vertex storin . o
§p What is the running time of
INSERT if T has n vertices?

u — first vtx with < 2 children S:

add v as u’s child \o?
6 <°°)(1. ©1)
while value(v) < value(u) and(u #1)do 2. O(logn)
SwaP(value(v), value(u)) 3. O(Vn)
v—u 4. ©(n)

1
2
3
4
52 PARENT(V) «— u
6
7
8
9

U < PARENT(v)
10: end while
11: end procedure

pollev.com/comp526

23/29

Qe -

<
“ ” SalL BTG
Bubble Up” Insert Procedu‘\f& T
1: procedure INSERT (p) i) PollEverywhere Question
2 & — new vertex storing p| . WO { 0
3: u — first vtx with < 2 children LIS .the TUnIns - tl_me ot
1k INSERT if T has n vertices?
4: add vas u's child GL\\
5: PARENT(V) < u L. e
6 while value(v) < value(x) and u#.L do 2. O(logn)
7 SwaP(value(v), value(u)) 3. O(v/n)

v—u 6 4. O(n)

u <— PARENT(v)
10: end while Pest Cose € ux.ku\1

11: end procedure s D).
Why is running time ©(log n)?

b lcokions & Wight of deer
= @loyn) =

23/29

Removing Min

Question
Given a heap T, how can we efficiently remove the minimum value
from T and maintain the heap properties?

Example
How to remove 2?

24/29

Removing Min

Question
Given a heap T, how can we efficiently remove the minimum value
from T and maintain the heap properties?

How to remove 22

24/29

“Trickle Down” Remove Min Procedure

1: procedure REMOVEMIN

2 v < tree root

3 w — “last” vertex in tree

4 value(v) — value(w)

5: remove w from tree

6 u — smaller of v's children
7 while value(v) = value(w) and u#. do
8 SwaP(value(v), value(u))
9 vVe—1u

10: u — v's smaller child

11: end while

12: end procedure

25/29

“Trickle Down” Remove Min Procedure

1: procedure REMOVEMIN PollEverywhere Question
2: —t t
v ‘r‘ee r,(,)o . What is the running time of
3 w — “last” vertex in tree .
REMOVEMIN if T has n
4 value(v) — value(w) .
vertices?
5: remove w from tree
6 u — smaller of v's children 1.6
7 while value(v) = value(w) and u#. do 2. O(logn)
8 Swapr(value(v), value(u)) 3. O(v/n)
9 v—u 4. ©(n)

10: u — v's smaller child
11: end while
12: end procedure

pollev.com/comp526

25/29

“Trickle Down” Remove Min Procedure

1: procedure REMOVEMIN PollEverywhere Question
2: —t t
v ‘r‘ee r,(,)o . What is the running time of
3 w — “last” vertex in tree .
REMOVEMIN if T has n
4 value(v) — value(w) .
vertices?
5: remove w from tree
6 u — smaller of v's children 1.6
7 while value(v) = value(w) and u#. do 2. O(logn)
8 Swapr(value(v), value(u)) 3. O(v/n)
9 v—u , 4. O(n)
10: u — v's smaller child

11: end while
12: end procedure

Why is running time G(logn)?

25/29

Heap Data Structures?

What elementary data structures can we use to represent heaps?

* Our tree representation was somewhat vague. ..

26/29

Heap Data Structures?

Question
What elementary data structures can we use to represent heaps?

* Our tree representation was somewhat vague. ..

Natural Choice: Tree of Nodes
* Have a NODE data structure where NODE stores:

* data (value)
* reference to PARENT
¢ references to LEFTCHILD and RIGHTCHILD

26/29

Heap Data Structures?

Question
What elementary data structures can we use to represent heaps?

* Our tree representation was somewhat vague. ..

Natural Choice: Tree of Nodes
* Have a NODE data structure where NODE stores:

* data (value)
* reference to PARENT
¢ references to LEFTCHILD and RIGHTCHILD

 Similar drawbacks to linked lists: data overhead, locality of
reference

26/29

Heap Data Structures?

Question
What elementary data structures can we use to represent heaps?

* Our tree representation was somewhat vague. ..

Natural Choice: Tree of Nodes
* Have a NODE data structure where NODE stores:

* data (value)
* reference to PARENT
¢ references to LEFTCHILD and RIGHTCHILD

 Similar drawbacks to linked lists: data overhead, locality of
reference

Less Obvious Choice: Arrays!

* For next time: think about how you could represent a heap using
an array and minimal additional overhead!

26/29

Heap Priority Queues

So far we heaps only store values from a ordered set
* A priority queue needs two data fields:
1. avalue x
2. apriority p(x)
* The priorities are from an ordered set
* To implement a priority queue with a heap

¢ each vertex v stores (refers to) x and p(x)
* the value value(v) is the priority p(x)

27129

Heap Priority Queues

So far we heaps only store values from a ordered set
* A priority queue needs two data fields:
1. avalue x
2. apriority p(x)
* The priorities are from an ordered set
* To implement a priority queue with a heap
¢ each vertex v stores (refers to) x and p(x)

* the value value(v) is the priority p(x)
The payoff
* INSERT in time ©(logn)
* REMOVEMIN in time O(logn)
e MIN in time ©(1)

27129

Next Time: More Trees!

* Searching Sorted Arrays
* Binary Search Trees
* Balanced Binary Trees

28/29

Scratch Notes

\
®

& o

