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Announcements
1. Second Quiz Open, due Friday

• Similar format to before
• Covers asymptotic (Big-O) notation
• Quiz is closed resource

• No books, notes, internet, etc.
• Do not discuss until after submission deadline (Friday night, after

midnight)

2. CampusWire
• Use for discussion of material, questions about lectures, etc
• Public comments for matters related to module content &

administration
• https://campuswire.com/p/GBB00CD7A, Code: 4796

3. Attendance Code:
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Meeting Goals
• Introduce Programming Assignment 1: Prefix Reversal Sorting

• Discuss the Queue ADT and implementations

• Introduce the Priority Queue ADT

• Introduce the heap data structure
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Programming
Assignment 1



Non-Standard Sorting
Fundamental Task: sorting a list of elements from smallest to largest

7 1 2 5 3 4 8 6 7°! 1 2 3 4 5 6 7 8

Typical basic (unit cost) operations:

• compare two elements to see which is larger

• swap two elements in the array

Non-standard sorting models:

• natural in contexts other than sorting arrays

• e.g., sorting physical objects with physical
constraints

• compare and swap may not be elementary
operations

Credit: Andy Goldsworthy
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Sorting with Prefix Reversals
Basic Operation: Prefix Reversal

• Reverse the elements up to index i in a list/array

• For example

1 2 3 4 5
27°! 3 2 1 4 5

• Natural operation for
• DNA
• stacks of physical objects

Basic Algorithmic Question: Given an array a of length n, what is the
fewest number of prefix reversal operations necessary to sort a?
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Your Task
Input: an array (list) a of numbers
between 1 and n.
Output: the array p of prefix reversals that
when applied to a will result in a sorted
array.
Goal: sort each array a using the fewest
possible prefix reversals.
Example: Sort [4, 1, 3, 2]

PollEverywhere Question

Starting from the array
[4, 3, 5, 6, 1, 2]
what is the resulting array
after performing the
following prefix reversals?
[2, 5, 3]

pollev.com/comp526
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More Specifically
Array Structures for input

1. random permutation a is uniformly random shuffling of numbers from 1 to n

2. tritonic for 0 < a < b < n the values of a are increasing from indices 0 to a,
decreasing from indices a to b, then increasing from indices b to n°1.

3. binary a’s values are all 0 or 1

4. ternary a’s values are all 0, 1, or 2

For each structure you will define a function that generates a prefix
reversal sequence that sorts arrays with the given structure.

Scoring:
• your program must correctly sort all arrays
• points for minimizing the number of prefix reversals over all

challenge arrays

Suggestion: it is possible to sort any array of length n with fewer than
2n prefix reversals

• start by implementing a simple baseline procedure to sort all arrays

8 / 29
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Queues



From Last Time
• Stack ADT

• linked list implementation
• array implementation

• Amortized analysis
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The Queue ADT
Queues, Intuitively

Goal: to store a collection of
elements

• elements arranged as in a
queue at Tesco

• new people enter the back of
the queue

• only the person at the front of
the queue can be removed
(serviced)

First In, First Out (FIFO) priority

Queues, Formally

• S is the state of the queue,
initially S =?

• S.ENQUEUE(x) : S 7! xS

• S.FRONT() : returns xn°1 where
S = x0x1 · · ·xn°1

• S.DEQUEUE() : Sx 7! S, returns
x

• S.EMPTY() returns
TRUE () S =?

Tons of Applications!

• Scheduling
• Messaging
• . . .
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List Backed Queues
Idea

• Store each element in a NODE

• Store references to NODE:
• head at the front of the queue
• tail at the back of the queue

Issues:

• Similar to linked list stack
implementation

• Locality of reference
• NODE memory overhead

1: class LISTQUEUE

2: NODE head
3: NODE tail
4: procedure ENQUEUE(x)
5: n √ new NODE

6: n.data √ x

7: tail.next √ n

8: tail √ n

9: end procedure

10: procedure DEQUEUE

11: n √ head
12: head √ n.next
13: return n.data
14: end procedure

15: end class
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Array Backed Queues
Idea:

• Store elements in the stack in an
array

• Maintain indices of head and tail

Ignores resizing/checking if full

1: class ARRAYQUEUE

2: a √ new array, size n

3: head,tail √ 0
4: procedure ENQUEUE(x)
5: a[tail] √ x

6: tail √ tail+1
7: end procedure

8: procedure DEQUQUE

9: head √ head+1
10: return a[head°1]
11: end procedure

12: end class
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Array Backed Queues
Idea:

• Store elements in the stack in an
array

• Maintain indices of head and tail

What is the problem here?

• What happens if we repeatedly call
• ENQUEUE(1)
• DEQUEUE()
• ENQUEUE(1)
• DEQUEUE()
• . . .

Ignores resizing/checking if full

1: class ARRAYQUEUE

2: a √ new array, size n

3: head,tail √ 0
4: procedure ENQUEUE(x)
5: a[tail] √ x

6: tail √ tail+1
7: end procedure

8: procedure DEQUQUE

9: head √ head+1
10: return a[head°1]
11: end procedure

12: end class
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Array Backed Queues
Idea:

• Store elements in the stack in an
array

• Maintain indices of head and tail

The fix:

• Use circular arrays

• Perform index arithmetic modulo n

(array size)
• All operations are then O(1)

• amortized O(1) time if resizing by
doubling size

Ignores resizing/checking if full

1: class ARRAYQUEUE

2: a √ new array, size n

3: head,tail √ 0
4: procedure ENQUEUE(x)
5: a[tail] √ x

6: tail √ tail+1 mod n

7: end procedure

8: procedure DEQUQUE

9: head √ head+1 mod n

10: return a[head°1 mod n]
11: end procedure

12: end class
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Priority Queues



The (Min) Priority Queue ADT
Priority Queues, Intuitively

Goal: to store a collection of
elements

• Each element x has an
associated priority, p(x)

• New elements inserted with
prescribed priorities

• Can access/remove element
with the minimum priority in
the collection

Priority Queues, Formally

• S is the state of the queue,
initially S =?

• S.INSERT(x,p(x)) : S =
x0x1 · · ·xixi+1 · · ·xn°1 7!
x0x1 · · ·xi x xi+1 · · ·xn°1

• where p(xi) ∑ p(x) < p(xi+1)

• S.MIN() : returns x0 where
S = x0x1 · · ·xn°1

• S.REMOVEMIN() : xS 7! S,
returns x

Applications

• efficient sorting
• implementing “greedy” algorithms
• resource management
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Naive Priority Queue Implementations
Array backed implementation

• Store element/priority pairs,
sorted by priority

• MIN and REMOVEMIN can be
implemented in O(1) time

• INSERT is£(n) worst-case
• must shift elements around

x

Linked list backed implementation

• Store element/priority pairs,
sorted by priority

• MIN and REMOVEMIN can be
implemented in O(1) time

• INSERT is£(n) worst-case
• must find location to insert x

Question. Can we perform all operations in o(n) time?
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Heaps



Binary Trees
A (rooted) binary tree consists of

• A set V of vertices

• A distinguished vertex
called the root

• Each vertex has (possibly
empty):

• left child
• right child

• Non-root vertices have a
parent

• All vertices are
descendants of the root

• Vertices without children are leaves

• The height is the maximal distance from root to a leaf
18 / 29
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Complete Binary Trees
A complete binary tree of height h is a binary tree in which:

• All vertices up to depth h°2 have exactly two children
• At most one vertex at depth h°1 has one child

• if v has children, then vertices to the left of v have two children
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Properties of Complete Binary Trees

Proposition
Suppose T is a complete binary tree of height h. Then the number n of
vertices of T satisfies 2h ∑ n ∑ 2h+1 °1.

PollEverywhere Question

If a complete binary tree T has
n vertices, what is its height?

1. h =£(1)

2. h =£(logn)

3. h =£(
p

n)

4. h =£(n)
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Properties of Complete Binary Trees

Proposition
Suppose T is a complete binary tree of height h. Then the number n of
vertices of T satisfies 2h ∑ n ∑ 2h+1 °1.

Proof.
• The number of vertices at depth d ∑ h°1 is 2d

• prove by induction on d

• There for the total number vertices up to depth h°1 is

n
0 = 1+2+4+·· ·+2h°1 = 2h °1

• prove formula by induction

• At depth h, the number of vertices is between 1 and 2h

Therefore, total n is between 2h = n
0+1 and 2h+1 °1 = n

0+2h.
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Min Heaps

Definition
A heap is a complete binary tree T with the following properties:

• each vertex (node) has an associated value from an ordered set

• for each pair of values p and q we can compare p < q

• the value associated with each vertex v is smaller than the values
associated with its children

2

4

5

7 13

8

16

6

12 9
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Inserting Into a Heap

Question
Given a heap T , how can we efficiently insert a new a value into T and
maintain the heap properties?

Example
How to insert the value 3?
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16
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12 9
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“Bubble Up” Insert Procedure
1: procedure INSERT(p)
2: v √ new vertex storing p

3: u √ first vtx with < 2 children
4: add v as u’s child
5: PARENT(v) √ u

6: while value(v) < value(u) and u 6=? do

7: SWAP(value(v),value(u))
8: v √ u

9: u √ PARENT(v)
10: end while

11: end procedure
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Removing Min

Question
Given a heap T , how can we efficiently remove the minimum value

from T and maintain the heap properties?

Example
How to remove 2?

2

3

5

7 13

4

16 8

6

12 9
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“Trickle Down” Remove Min Procedure
1: procedure REMOVEMIN

2: v √ tree root
3: w √ “last” vertex in tree
4: value(v) √ value(w)
5: remove w from tree
6: u √ smaller of v’s children
7: while value(v) ∏ value(u) and u 6=? do

8: SWAP(value(v),value(u))
9: v √ u

10: u √ v’s smaller child
11: end while

12: end procedure

25 / 29



“Trickle Down” Remove Min Procedure
1: procedure REMOVEMIN

2: v √ tree root
3: w √ “last” vertex in tree
4: value(v) √ value(w)
5: remove w from tree
6: u √ smaller of v’s children
7: while value(v) ∏ value(u) and u 6=? do

8: SWAP(value(v),value(u))
9: v √ u

10: u √ v’s smaller child
11: end while

12: end procedure

PollEverywhere Question

What is the running time of
REMOVEMIN if T has n

vertices?

1. £(1)

2. £(logn)

3. £(
p

n)

4. £(n)

pollev.com/comp526

25 / 29



“Trickle Down” Remove Min Procedure
1: procedure REMOVEMIN

2: v √ tree root
3: w √ “last” vertex in tree
4: value(v) √ value(w)
5: remove w from tree
6: u √ smaller of v’s children
7: while value(v) ∏ value(u) and u 6=? do

8: SWAP(value(v),value(u))
9: v √ u

10: u √ v’s smaller child
11: end while

12: end procedure

PollEverywhere Question

What is the running time of
REMOVEMIN if T has n

vertices?

1. £(1)

2. £(logn)

3. £(
p

n)

4. £(n)

Why is running time£(logn)?

25 / 29

I



Heap Data Structures?

Question
What elementary data structures can we use to represent heaps?

• Our tree representation was somewhat vague. . .

Natural Choice: Tree of Nodes

• Have a NODE data structure where NODE stores:
• data (value)
• reference to PARENT
• references to LEFTCHILD and RIGHTCHILD

• Similar drawbacks to linked lists: data overhead, locality of
reference

Less Obvious Choice: Arrays!

• For next time: think about how you could represent a heap using
an array and minimal additional overhead!
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Heap Priority Queues
So far we heaps only store values from a ordered set

• A priority queue needs two data fields:
1. a value x

2. a priority p(x)

• The priorities are from an ordered set
• To implement a priority queue with a heap

• each vertex v stores (refers to) x and p(x)
• the value value(v) is the priority p(x)

The payoff

• INSERT in time£(logn)

• REMOVEMIN in time£(logn)

• MIN in time£(1)
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Next Time: More Trees!

• Searching Sorted Arrays
• Binary Search Trees
• Balanced Binary Trees
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Scratch Notes
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