						Ľ,			l	I.					j,		I																												
		I,			l				Ľ,				I							I,																									
0000000	00		0.0	0 0	0.0	0	00	0	00	00	0	0	G (2017		1	0	00		0 0 18 39	00	00	00) () 4 45	00) () 7 48	00	0 i	0	0 () () (5 56 5	0 0 0 58	0 L		0 0	0.0			0	0 0	0	0		0	0	0
1 11111	11	1	1.1	1		1 1	1.1	1	1	1	1	11	1	1		1		1	1 1	1	1 1	1.1	11	11	11	1.1	1	1 1	1	11	1 1	11	1	1 1	11	1	1 1	1	1 1	1	1 1	1	1 1	1	1 1
2 2 🛛 2 2 2 2	2 2	2 2	22	2 2	2	2	22	2	2 2	2 2		2 2	2	2 2	2 2	2	2	2	22	2	22	2 2	2 2	2 2	2 2	22	2	2 2	2 2	2 2	2 2	2 2	2	22	2 2	2	22	2	2 2	2	2 2	2	2 2	2	22
3333333	33	33	33	33	3	3	3	3	33	3 3	3	3	3	3 3	3 3	3	3 3	8	33	3	33	3 3	33	3 3	33	33	3	33	3 3	3 3	33	3 3	3	33	3 3	3	33	3	33	3	33	3	33	3	3
4 4 4 4 4 4	4 4	4 4	44	4 4	4	44	4 4	4	44	4 4	4	44	4 (14	4 4	4	4 4	4	4	4	44	4 4	4 4	4 4	14	4 4	4	44	4 4	4 4	44	4 4	4	44	4 4	4	44	4	44	4	4	4	44		4 4
5555555	5 5	5 5	5	5	5	55	5 5		55	5	5	55	5		5 5		5 5	i 5	5 5		55	5 5	5 5	5 5	5 5	55	5	55	5 5	i 5	55	5 5	5	55	5 5	5	55	5	55	5	55	5	55	5	55
6666666	6	66	6	66	6	66	66	6	66	6 E	6	66	6	5 6	6 6	6	66	6 6	66	6	66	6 6	66	6 8	56	6 6	6	66	6 6	6 6	66	6 6	9	66	6 8	6	66	6	65	6	66	6	65	6	66
11111	11	177		77	7		7	7		77	7		7	17	7	17	7	7	7	7		7 1		1	17	? 7	7	77	7	7	77	7 7	1	77	7 1			7		7	7	I.			77

Lecture 4: Data Structures I

COMP526: Efficient Algorithms

Updated: October 15, 2024

Will Rosenbaum University of Liverpool

Announcements

1. Second Quiz, due Friday

- Similar format to before
 - One question, select all correct answers
 - 20 minute time limit
- Covers asymptotic (Big-O) notation
 - Lectures 03 and 04
 - Relevant reading from CLRS
- Quiz is **closed resource**
 - No books, notes, internet, etc.
 - Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment 1: Discuss on Thursday
 - Due 13 November
- 3. Attendance Code:

Meeting Goals

- Finish discussion of asymptotic notation
- Introduce Abstract Data Types:
 - Stack
 - Queue
 - Priority Queue
- Discuss array-backed and linked list-backed implementations of Stacks and Queues
- Introduce amortized analysis

Asymptotic Notation

From Last Time

Definition

Suppose *f* and *g* are functions from **N** to \mathbf{R}^+ . Then we say that f = O(g) (read: *f* is *big* O of *g*) if there exist constants $N_0 \in \mathbf{N}$ and $C \in \mathbf{R}$ such that for all $n \in \mathbf{N}$

 $n \ge N_0 \implies f(n) \le Cg(n).$

Equivalently, $f = O(g) \iff \limsup \frac{f(n)}{g(n)} < \infty$

Proposition

Suppose f, f_1 , f_2 , g, g_1 , g_2 , h are functions and a is any constant. Then:

- 1. $(\forall n f(n) \le a) \implies f = O(1)$
- 2. $(\forall n f(n) \le g(n)) \implies f = O(g)$
- 3. $f = O(g) \implies a \cdot f = O(g)$
- 4. f = O(g) and $g = O(h) \implies f = O(h)$

5.
$$f = O(h)$$
 and
 $g = O(h) \implies f + g = O(h)$

6. $f_1 = O(g_1)$ and $f_2 = O(g_2) \Longrightarrow f_1 \cdot f_2 = O(g_1 \cdot g_2)$

Variations of O

- $f = \Theta(g)$ if f = O(g) and g = O(f)
 - Example: $4n^2 + 3n + 7 = \Theta(n^2)$
- $f = \Omega(g)$ if g = O(f)
 - Example: $0.01n^2 7n = \Omega(n^2)$
- f = o(g) if for every $\varepsilon > 0$, there exists N_0 such that $n \ge N_0 \implies \frac{f(n)}{g(n)} < \varepsilon$.
 - Equivalently: $f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ • Example: $n^{1.999} = o(n^2)$
- $f = \omega(g)$ if g = o(f)
 - Example: $0.01 n^{2.01} = \omega(n^2)$

Variations of O

- $f = \Theta(g)$ if f = O(g) and g = O(f)
 - Example: $4n^2 + 3n + 7 = \Theta(n^2)$
- $f = \Omega(g)$ if g = O(f)
 - Example: $0.01n^2 7n = \Omega(n^2)$
- f = o(g) if for every $\varepsilon > 0$, there exists N_0 such that $n \ge N_0 \implies \frac{f(n)}{g(n)} < \varepsilon$.
 - Equivalently: $f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ • Example: $n^{1.999} = o(n^2)$
- $f = \omega(g)$ if g = o(f)
 - Example: $0.01 n^{2.01} = \omega(n^2)$

Mnemonic for Variations

Big-O	(in)equality
ω	>
Ω	≥
Θ	*
0	\leq
0	<

Variations of O

- $f = \Theta(g)$ if f = O(g) and g = O(f)
 - Example: $4n^2 + 3n + 7 = \Theta(n^2)$
- $f = \Omega(g)$ if g = O(f)
 - Example: $0.01n^2 7n = \Omega(n^2)$
- f = o(g) if for every $\varepsilon > 0$, there exists N_0 such that $n \ge N_0 \implies \frac{f(n)}{g(n)} < \varepsilon$.
 - Equivalently: $f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ • Example: $n^{1.999} = o(n^2)$
- $f = \omega(g)$ if g = o(f)
 - Example: $0.01 n^{2.01} = \omega(n^2)$

Mnemonic for Variations

Big-O	(in)equality
ω	>
Ω	≥
Θ	*
0	≤
0	<
More Pro	perties
• $f_1 = 0$	$O(g_1)$ and
$f_2 = 0$	$(g_2) \Longrightarrow$
$f_1 \cdot f_2$	$= o(g_1 \cdot g_2)$
• $f_1 = 0$	$\Omega(g_1)$ and

 $f_2 = \omega(g_2) \Longrightarrow$ $f_1 \cdot f_2 = \omega(g_1 \cdot g_2)$

Interpretation

Suppose:

- two algorithms A and B for solving the same problem
- running time of *A* is *f*, running time of *B* is *g*

• f = o(g)

Consider running *A* on a slow machine M_1 and *B* on a fast machine M_2 . Then: regardless of how much slower M_1 is than M_2 , for *sufficiently large* inputs, *A* will complete faster than *B*.

Interpretation

Suppose:

- two algorithms A and B for solving the same problem
- running time of *A* is *f*, running time of *B* is *g*

• f = o(g)

Consider running *A* on a slow machine M_1 and *B* on a fast machine M_2 . Then: regardless of how much slower M_1 is than M_2 , for *sufficiently large* inputs, *A* will complete faster than *B*.

The Moral. Efficient *algorithms* are better than faster hardware.

• little-*o* notation gives the "right" abstraction to formalize this relationship

Common Orders of Growth

Named orders of growth:

name	asymptotic growth
constant	<i>O</i> (1)
logarithmic	$O(\log n)$
polylogarithmic	$O(\log^c n)$
linear	O(n)
almost linear	$O(n\log^c n)$
quadratic	$O(n^2)$
polynomial	$O(n^c)$
exponential	$O(c^n)$

Common Orders of Growth

Named orders of growth:

name	asymptotic growth
constant	<i>O</i> (1)
logarithmic	$O(\log n)$
polylogarithmic	$O(\log^c n)$
linear	O(n)
almost linear	$O(n\log^c n)$
quadratic	$O(n^2)$
polynomial	$O(n^c)$
exponential	$O(c^n)$

Relationships

Between classes: For all a, b > 0

- $a = o(\log^b n)$
- $\log^a n = o(n^b)$

•
$$n^a = o(b^n)$$

Common Orders of Growth

Named orders of growth:

name	asymptotic growth
constant	<i>O</i> (1)
logarithmic	$O(\log n)$
polylogarithmic	$O(\log^c n)$
linear	O(n)
almost linear	$O(n\log^c n)$
quadratic	$O(n^2)$
polynomial	$O(n^c)$
exponential	$O(c^n)$

Relationships

- Between classes: For all a, b > 0
 - $a = o(\log^b n)$
 - $\log^a n = o(n^b)$

•
$$n^a = o(b^n)$$

Within classes: For all a, b, a < b

- $\log^a n = o(\log^b n)$
- $n^a = o(n^b)$
- $a^n = o(b^n)$

Example

Example

Compare the asymptotic growth of the following functions:

- 1. $f(n) = 2n^2 + 2^{n/2}$
- 2. $g(n) = \log^2 n + \sqrt{n}$
- 3. $h(n) = n + n\log n + n^{3/2}$

Linear ADTs and Data Structures

Abstract Data Types and Data Structures

Abstract Data Types (ADTs)

An **abstract data type** gives a formal specification of a task to be performed:

- List of supported operations (syntax)
- The effects of applying the operations (semantics)

Abstract Data Types and Data Structures

Abstract Data Types (ADTs)

An **abstract data type** gives a formal specification of a task to be performed:

- List of supported operations (syntax)
- The effects of applying the operations (semantics)

Data Structures

A data structure specifies

- how data is represented
- how the supported operations are performed (i.e., what algorithms are used)
- what are the costs of the operations

Abstract Data Types and Data Structures

Abstract Data Types (ADTs)

An **abstract data type** gives a formal specification of a task to be performed:

- List of supported operations (syntax)
- The effects of applying the operations (semantics)

Data Structures

A data structure specifies

- how data is represented
- how the supported operations are performed (i.e., what algorithms are used)
- what are the costs of the operations

Question. Why is it useful to separate ADTs from Data Structure?

- Can swap different data structures for same ADT
 - applications *using* the functionality will not be broken
 - different data structures may be more efficient in some applications
- Better abstractions
- Generic lower bounds

The Stack ADT

Stacks, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a stack of books
- can only access top-most element:
 - put a new book on the stack
 - look at the top-most book
 - remove the top-most book

The Stack ADT

Stacks, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a stack of books
- can only access top-most element:
 - put a new book on the stack
 - look at the top-most book
 - remove the top-most book

Stacks, Formally

- *S* is the state of the stack, initially *S* = ∅
- $S.PUSH(x) : S \mapsto Sx$
- *S*.TOP() : returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- $S.POP(): Sx \mapsto S$, returns x
- S.EMPTY() returns TRUE $\iff S = \emptyset$

The Stack ADT

Stacks, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a stack of books
- can only access top-most element:
 - put a new book on the stack
 - look at the top-most book
 - remove the top-most book

Tons of Applications!

- Executing programs (call stack)
- Parsing/evaluating arithmetic expression
- Syntax checking (parenthesis)

• ...

Stacks, Formally

- *S* is the state of the stack, initially $S = \emptyset$
- $S.PUSH(x) : S \mapsto Sx$
- *S*.TOP() : returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- $S.POP(): Sx \mapsto S$, returns x
- S.EMPTY() returns TRUE $\iff S = \emptyset$

Try It Yourself!

PollEverywhere Question

What is the result of calling TOP() after the following sequence stack operations:

PUSH(1) PUSH(2) PUSH(3) POP() PUSH(4) PUSH(5) POP() PUSH(6) POP() POP()

pollev.com/comp526

Try It Yourself!

PollEverywhere Question

What is the result of calling TOP() after the following sequence stack operations:

PUSH(1)
PUSH(2)
PUSH(3)
Pop()
PUSH(4)
PUSH(5)
Pop()
PUSH(6)
Pop()
Pop()

Stacks, Formally

- *S* is the state of the stack, initially $S = \emptyset$
- $S.PUSH(x) : S \mapsto Sx$
- *S*.TOP() : returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- $S.POP(): Sx \mapsto S$, returns x
- S.EMPTY() returns TRUE $\iff S = \emptyset$

Try It Yourself!

PollEverywhere Question

What is the result of calling TOP() after the following sequence stack operations:

PUSH(1) PUSH(2) PUSH(3) POP() PUSH(4) PUSH(5) POP() PUSH(6) POP() POP()

Linked List Backed Stack Implementation

Idea

- Store each element in a NODE
- Each NODE stores
 - the value of an element in the stack
 - a *reference* to the NODE storing the next element
 - 1: class Node
 - 2: datavalue
 - 3: NODE next
 - 4: end class

ignores empty stack condition

1:	CIASS LISTSTACK
2:	NODE head
3:	procedure PUSH(x)
4:	$n \leftarrow \mathbf{new} \operatorname{NODE}$
5:	$n.data \leftarrow x$
6:	<i>n</i> .next ← head
7:	head $\leftarrow n$
8:	end procedure
9:	procedure POP
10:	$n \leftarrow \text{head}$
11:	head $\leftarrow n.next$
12:	return <i>n</i> .data
13:	end procedure
14:	procedure TOP
15:	return head.data
16:	end procedure
17:	end class

Issues with Linked List Stacks

Issues

- NODEs waste space
 - must store reference for each entry

- Following chains of reference is costly
 - memory access is non-local
 - sequential memory access is more efficient

- 1: **class** LISTSTACK
- 2: NODE head $\leftarrow \emptyset$
- 3: procedure PUSH(x)
 - $n \leftarrow \mathbf{new} \operatorname{NODE}$
- 5: $n.data \leftarrow x$

4:

- 6: $n.next \leftarrow head$
 - head $\leftarrow n$
- 8: end procedure
- 9: procedure POP
- 10: $n \leftarrow \text{head}$
- 11: head $\leftarrow n$.next
- 12: return *n*.data
- 13: end procedure
- 14: procedure TOP
- 15: **return** head.data
- 16: end procedure
- 17: **end class**

Arrays as ADTs

Informally, arrays are indexed lists of elements:

$$a = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline l & i & v & e & r & p & o & o & l \end{bmatrix}$$

Array Operations (ADT):

- **create** an array of size *n*
- get the element at index *i*:
 - *a*[4] returns *r*
- set the value at index *i* to a prescribed value
 - $a[5] \leftarrow c$

Array Operation Costs (Data Structure)

- **create** an array of size *n* has cost *O*(*n*)
- get and set have cost *O*(1)

Array Backed Stack Implementation

Idea:

- Store elements in the stack in an array
 - access array values by *index*
 - neighboring values at adjacent indices
 - \implies sequential access
- Only overhead: store index of head (top)

- 1: class ArrayStack
- 2: $a \leftarrow \text{new array}$
- 3: head $\leftarrow 0$

5:

- 4: **procedure** PUSH(x)
 - $a[\text{head}] \leftarrow x$
- 6: head \leftarrow head + 1
- 7: end procedure
- 8: procedure POP
 - head ← head 1
- 10: return *a*[head]
- 11: end procedure
- 12: procedure TOP
- 13: **return** *a*[head 1]
- 14: end procedure
- 15: end class

Array Backed Stack Implementation

Idea:

- Store elements in the stack in an array
 - access array values by *index*
 - neighboring values at adjacent indices
 - \implies sequential access
- Only overhead: store index of head (top)

What is the issue here?

- 1: **class** ArrayStack
- 2: $a \leftarrow \text{new array}$
- 3: head $\leftarrow 0$

5:

- 4: **procedure** PUSH(x)
 - $a[\text{head}] \leftarrow x$
- 6: head \leftarrow head + 1
- 7: end procedure
- 8: procedure POP
 - head ← head 1
- 10: return *a*[head]
- 11: end procedure
- 12: procedure TOP
- 13: **return** *a*[head 1]
- 14: end procedure
- 15: end class

Resizing Arrays

The Problem: Arrays are *fixed size!*

• What if we don't know the (maximum) size of the stack in advance?

Resizing Arrays

The Problem: Arrays are *fixed size*!

• What if we don't know the (maximum) size of the stack in advance?

A Solution: Make a larger array when necessary!

• Must copy contents of old array into new array... ...this is costly!

Increasing stack capacity

- 1: **class** ArrayStack 2: $a \leftarrow \text{new array}$ 3: 4: **procedure** INCREASECAPACITY(k) 5: $n \leftarrow \text{SIZE}(a)$ $b \leftarrow$ new array of size n + k6: 7: for i = 0, 1, ..., n - 1 do 8: $b[i] \leftarrow a[i]$ end for 9: head $\leftarrow h$ 10: 11: end procedure
- 12: end class

Resizing Arrays

The Problem: Arrays are *fixed size*!

• What if we don't know the (maximum) size of the stack in advance?

A Solution: Make a larger array when necessary!

• Must copy contents of old array into new array... ...this is costly!

Increasing stack capacity

1: **class** ArrayStack 2: $a \leftarrow \text{new array}$ 3: 4: **procedure** INCREASECAPACITY(k) 5: $n \leftarrow \text{SIZE}(a)$ $b \leftarrow$ new array of size n + k6: 7: for i = 0, 1, ..., n - 1 do 8: $b[i] \leftarrow a[i]$ end for 9: 10: head $\leftarrow h$ 11: end procedure 12: end class

Question. What is the running time of INCREASECAPACITY?

Two Strategies

Design Question. When our array runs out of room, by how much should we increase the stack capacity?

Strategy 1. Increase the capacity by k = 1 each time.

• Why increase the size more than we need to?

Two Strategies

Design Question. When our array runs out of room, by how much should we increase the stack capacity?

Strategy 1. Increase the capacity by k = 1 each time.

• Why increase the size more than we need to?

Strategy 2. Increase the capacity by *n* each time!

• Maybe we'll need more extra space?

Two Strategies

Design Question. When our array runs out of room, by how much should we increase the stack capacity?

Strategy 1. Increase the capacity by k = 1 each time.

• Why increase the size more than we need to?

Strategy 2. Increase the capacity by *n* each time!

• Maybe we'll need more extra space?

PollEverywhere Question

Which strategy will lead to better performance?

pollev.com/comp526

Running Time Comparison

Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have *worst-case* running time of $\Theta(n)$ for INCREASECAPACITY

- Strategy 1 may incur this on *every* PUSH operation
 - Overall running time $\Theta(n^2)$

Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have *worst-case* running time of $\Theta(n)$ for INCREASECAPACITY

- Strategy 1 may incur this on *every* PUSH operation
 - Overall running time $\Theta(n^2)$
- For Strategy 2, INCREASECAPACITY only gets called when the stack size is 1,2,4,8,...,2^k,..., *n*.
 - If cost of resizing n' is $c \cdot n'$, what is total resize cost?

Amortized Analysis

Goal. To analyze the worst-case running time of a *sequence* of operations.

• Amortized cost = largest average cost per operation averaged over all sequences.

Amortized Analysis

Goal. To analyze the worst-case running time of a *sequence* of operations.

• Amortized cost = largest average cost per operation averaged over all sequences.

Banker's View

- Each operation has a (financial) cost
- Cost can be paid:
 - from pocket
 - from bank account
- For each operation, can
 - withdraw from account
 - deposit to account

Amortized Analysis

Goal. To analyze the worst-case running time of a *sequence* of operations.

• Amortized cost = largest average cost per operation averaged over all sequences.

Banker's View

- Each operation has a (financial) cost
- Cost can be paid:
 - from pocket
 - from bank account
- For each operation, can
 - withdraw from account
 - deposit to account

A sequence of operations has amortized cost *c* if for each operation:

- 1. the operation is paid for (from pocket or bank account)
- 2. at most *c* value is paid from pocket and/or *deposited* during each operation

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):

- PUSH(x) has cost $c_1 = O(1)$ if the array is not full,
- PUSH(x) has cost $c_2 = O(n)$ if the array is full.

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):

- PUSH(x) has cost $c_1 = O(1)$ if the array is not full,
- PUSH(x) has cost $c_2 = O(n)$ if the array is full.

PollEverywhere Question

How much money must we add to our bank account after each (not full) PUSH to ensure our balance is at least c_2 before the next resize?

pollev.com/comp526

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):

- PUSH(x) has cost $c_1 = O(1)$ if the array is not full,
- PUSH(x) has cost $c_2 = O(n)$ if the array is full.

Completing the analysis:

- If current capacity is n, last resize was at capacity n/2
- There were (at least) *n*/2 non-resizing PUSH operations before next resize
- Must pay *c*₂ for next resize
- It suffices to put $c_2/(n/2) = 2c_2/n$ in bank each operation

On each non-resizing operation, we pay c_1 out of pocket, and $2c_2/n$ into the bank

 \implies the amortized cost is $c_1 + 2c_2/n = O(1) + \frac{1}{n}O(n) = O(1)$.

The Moral. A single resize may cost $\Theta(n)$, but the average cost over sequences of operations is always O(1) (if we're careful).

The Queue ADT

Queues, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a queue at Tesco
- new people enter the **back** of the queue
- only the person at the **front** of the queue can be removed (serviced)

The Queue ADT

Queues, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a queue at Tesco
- new people enter the **back** of the queue
- only the person at the **front** of the queue can be removed (serviced)

Queues, Formally

- *S* is the state of the queue, initially *S* = ∅
- S.ENQUEUE $(x) : S \mapsto xS$
- *S*.FRONT() : returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- S.DEQUEUE() : $Sx \mapsto S$, returns x
- S.EMPTY() returns TRUE $\iff S = \emptyset$

The Queue ADT

Queues, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a queue at Tesco
- new people enter the **back** of the queue
- only the person at the **front** of the queue can be removed (serviced)

Tons of Applications!

- Scheduling
- Messaging

• .

Queues, Formally

- *S* is the state of the queue, initially *S* = ∅
- S.ENQUEUE(x) : $S \mapsto xS$
- *S*.FRONT() : returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- S.DEQUEUE() : $Sx \mapsto S$, returns x
- S.EMPTY() returns TRUE $\iff S = \emptyset$

List Backed Queues

Idea

- Store each element in a NODE
- Store references to NODE:
 - head at the front of the queue
 - tail at the back of the queue

- 1: class LISTQUEUE
- 2: NODE head
- 3: NODE tail

5:

- 4: **procedure** ENQUEUE(x)
 - $n \leftarrow \mathbf{new} \operatorname{NODE}$
- 6: $n.data \leftarrow x$
- 7: tail.next $\leftarrow n$
 - tail $\leftarrow n$
- 9: end procedure
- 10: procedure DEQUEUE
- 11: $n \leftarrow \text{head}$
- 12: head $\leftarrow n.next$
- 13: return *n*.data
- 14: end procedure
- 15: end class

List Backed Queues

Idea

- Store each element in a NODE
- Store references to NODE:
 - head at the front of the queue
 - tail at the back of the queue

Issues:

- Similar to linked list stack implementation
 - Locality of reference
 - NODE memory overhead

- 1: class LISTQUEUE
- 2: NODE head
- 3: NODE tail

5:

6:

- 4: **procedure** ENQUEUE(x)
 - $n \leftarrow \mathbf{new} \operatorname{NODE}$
 - $n.data \leftarrow x$
- 7: tail.next $\leftarrow n$
 - tail $\leftarrow n$
- 9: end procedure
- 10: procedure DEQUEUE
- 11: $n \leftarrow \text{head}$
- 12: head $\leftarrow n.next$
- 13: return *n*.data
- 14: end procedure
- 15: end class

Array Backed Queues

Idea:

- Store elements in the stack in an array
- Maintain indices of head and tail

Ignores resizing/checking if full

- 1: class ArrayQueue
- 2: $a \leftarrow$ new array, size n
- 3: head, tail $\leftarrow 0$
- 4: **procedure** ENQUEUE(x)
 - $a[\text{tail}] \leftarrow x$
- 6: $tail \leftarrow tail + 1$
- 7: end procedure
- 8: procedure DEQUQUE
- 9: head \leftarrow head + 1
- 10: **return** *a*[head 1]
- 11: end procedure
- 12: end class

Array Backed Queues

Idea:

- Store elements in the stack in an array
- Maintain indices of head and tail

What is the problem here?

Ignores resizing/checking if full

- 1: class ArrayQueue
- 2: $a \leftarrow$ new array, size n
- 3: head, tail $\leftarrow 0$
- 4: **procedure** ENQUEUE(x)
 - $a[\text{tail}] \leftarrow x$
- 6: $tail \leftarrow tail + 1$
- 7: end procedure
- 8: procedure DEQUQUE
- 9: head \leftarrow head + 1
- 10: **return** *a*[head 1]
- 11: end procedure
- 12: end class

Array Backed Queues

Idea:

- Store elements in the stack in an array
- Maintain indices of head and tail

The fix:

- Use circular arrays
- Perform index arithmetic *modulo n* (array size)
- All operations are then *O*(1)
 - amortized *O*(1) time if resizing by doubling size

Ignores resizing/checking if full

- 1: class ArrayQueue
- 2: $a \leftarrow$ new array, size n
- 3: head, tail $\leftarrow 0$
- 4: **procedure** ENQUEUE(x)
 - $a[tail] \leftarrow x$
- 6: $tail \leftarrow tail + 1 \mod n$
- 7: end procedure
- 8: procedure DEQUQUE
 - head \leftarrow head + 1 mod *n*
- 10: return $a[\text{head} 1 \mod n]$
- 11: end procedure
- 12: end class

5:

The (Min) Priority Queue ADT

Priority Queues, Intuitively

Goal: to store a *collection* of elements

- Each element *x* has an associated *priority*, *p*(*x*)
- New elements **inserted** with prescribed priorities
- Can access/remove element with the *minimum* priority in the collection

The (Min) Priority Queue ADT

Priority Queues, Intuitively

Goal: to store a *collection* of elements

- Each element *x* has an associated *priority*, *p*(*x*)
- New elements **inserted** with prescribed priorities
- Can access/remove element with the *minimum* priority in the collection

Priority Queues, Formally

- *S* is the state of the queue, initially *S* = ∅
- S.INSERT $(x, p(x)) : S \mapsto xS$
- *S*.MIN() : returns x_0 where $S = x_0 x_1 \cdots x_{n-1}$
- S.REMOVEMIN() : $xS \mapsto S$, returns x
- S.DECREASEKEY(x, p') $S = x_0 x_1 \cdots x_{i-1} x x_{i+1} \cdots x_{n-1} \mapsto x_0 x_1 \cdots x_{j-1} x x_j x_{i-1} x_{i+1} \cdots x_{n-1}$

•
$$p(x_j) \le p'(x) < p(x_{j+1})$$

The (Min) Priority Queue ADT

Priority Queues, Intuitively

Goal: to store a *collection* of elements

- Each element *x* has an associated *priority*, *p*(*x*)
- New elements **inserted** with prescribed priorities
- Can access/remove element with the *minimum* priority in the collection

Priority Queues, Formally

- *S* is the state of the queue, initially *S* = ∅
- S.INSERT $(x, p(x)) : S \mapsto xS$
- *S*.MIN() : returns x_0 where $S = x_0 x_1 \cdots x_{n-1}$
- S.REMOVEMIN() : $xS \mapsto S$, returns x
- S.DECREASEKEY(x, p') $S = x_0 x_1 \cdots x_{i-1} x_{i+1} \cdots x_{n-1} \mapsto x_0 x_1 \cdots x_{j-1} x_j x_{i-1} x_{i+1} \cdots x_{n-1}$

• $p(x_j) \le p'(x) < p(x_{j+1})$

For Next Time

- Think about implementing min priority queues with linked lists and stacks
- Consider the running times of the priority queue operations

Next Time: Trees!

- Heaps
- Binary Search Trees
- Balanced Binary Trees

Scratch Notes