COMP526: Efficient Algorithms

- Your Instructor: Will Rosenbaum George Holt 2.16B w.rosenbaum@liverpool.ac.uk
- Module Website: willrosenbaum.com/teaching/2024f-comp-526
 - The authoritative source for module information about COMP526.
- Poll Everywhere: pollev.com/comp526
 - Used for in-class participation and attendance
 - Use U of L credentials to log in

- CampusWire: https://campuswire.com/p/GBB00CD7A
 - Invite code: 4796
 - Used for announcements and asynchronous discussion (outside of lecture)

	101 I II.	1 0.1	
1 I.I.	1 I II I	E TELET	1.1
00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	11.1.1.1.1.1.1.1.1		11111111111111111111
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
333333333333	3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 8 3 3 3 3 3 3 3 3 8 8 8 8 8 8 8 8 8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	444444444444444	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	44444444444 KEEEEEEEEEEEEEEE
aa l aaaaaaaa		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	666666666666666666666666666666666666666
1111	הרורו ו וורררוה		77777777 7 77777

Lecture 2: Logic, Proof Techniques & Induction

COMP526: Efficient Algorithms

Will Rosenbaum

University of Liverpool

Updated: October 8, 2024

1. First quiz released tomorrow, due Friday

- Administered through Canvas
- One question, multiple choice
- 20 minutes
- Covers basic (today's lecture, this week's tutorial, posted notes)
- 2. Programming Assignment 1 released next week
 - Due 13 November
- 3. Participation Confirmation: Pending

- Motivate the need for proofs in CS
- Introduce the mechanics of propositional and predicate logic
- Describe proof techniques and applications
- Introduce mathematical induction
- · Analyze algorithm correctness with loop invariants

5/33

A Scenario

The Setup:

- You are contracted by a (virtual) casino to audit their code
- The casino spent millions of £££ developing an AI to play their card games
- They believe their AI is *unbeatable*
 - on average the casino will win
 - this ensures their business is profitable
- The gaming AI company even provided a *mathematical proof* that their strategies will win on average

Photo Credit: OpenAI DALL·E

5/33

A Scenario

The Setup:

- You are contracted by a (virtual) casino to audit their code
- The casino spent millions of £££ developing an AI to play their card games
- They believe their AI is *unbeatable*
 - on average the casino will win
 - this ensures their business is profitable
- The gaming AI company even provided a *mathematical proof* that their strategies will win on average

Unfortunately the casino found a group of users that were consistently **beating** the AI and winning a significant amount of money. Hence, they called in the experts: you!

Photo Credit: OpenAI DALL-E

Shuffling Cards

You find that the casino was using the following procedure to shuffle a (virtual) deck of cards:

- 1: **procedure** SHUFFLE(*A*, *n*)
- 2: **for** i = 1, ..., n **do**
- 3: $j \leftarrow \text{RANDOM}(1, n)$
- 4: SWAP(*A*, *i*, *j*)
- 5: end for
- 6: end procedure

▷ shuffle a deck A of n cards
▷ iterate over indices
▷ pick random index
▷ swap values at i and j

Shuffling Cards

You find that the casino was using the following procedure to shuffle a (virtual) deck of cards:

- 1: **procedure** SHUFFLE(*A*, *n*)
- 2: **for** i = 1, ..., n **do**
- 3: $j \leftarrow \text{RANDOM}(1, n)$
- 4: SWAP(*A*, *i*, *j*)
- 5: end for
- 6: end procedure

▷ shuffle a deck A of n cards ▷ iterate over indices ▷ pick random index ▷ swap values at i and j

PollEverywhere Question

- I think SHUFFLE is fine.
- SHUFFLE is maybe reasonable?
- SHUFFLE is definitely problematic.
- I do not understand SHUFFLE.

pollev.com/comp526

Testing Shuffle

What Gives?

What is the problem here?

Challenge 1

Give a *simple* argument that SHUFFLE could not possibly generate all permutations of cards with equal probability.

Challenge 2

Argue that the modified shuffle algorithm on the right does generate a uniformly random shuffling of the elements of *A*.

- 1: procedure
 - FYKSHUFFLE(A, n)
- 2: **for** *i* = 1,..., *n* **do**
- 3: $j \leftarrow \text{RANDOM}(1, i)$
- 4: SWAP(*A*, *i*, *j*)
- 5: **end for**
- 6: end procedure

A Question

Having found a problem in the SHUFFLE subroutine, who is at fault? The casino? The AI consultant?

A Question

Having found a problem in the SHUFFLE subroutine, who is at fault? The casino? The AI consultant?

The Moral

In order to make trustworthy conclusions about algorithms we must:

- 1. Assert our assumptions about the system
- 2. State our (desired) conclusions precisely
- 3. Argue that our conclusions follow logically from our assumptions

Goal: any system that fulfills our assumptions will also satisfy our conclusions.

- 1. Formal Reasoning through Logic (today)
 - Basic language of logic: propositions and predicates
 - Proof techniques
 - Mathematical induction
- 2. Our Computational Model (Thursday)
- 3. Algorithms (Rest of the Semester)

Propositions, Connectives, and Formulae

- A (logical) proposition is a declarative sentence that can take the value true(*T*) or false(*F*)
 - *P* = "it is raining"
 - *Q* = "I am wearing a jacket"
 - R = "I am soaked"

Propositions, Connectives, and Formulae

- A (logical) proposition is a declarative sentence that can take the value true(*T*) or false(*F*)
 - *P* = "it is raining"
 - *Q* = "I am wearing a jacket"
 - R = "I am soaked"
- logical connectives allow us to combine propositions into more complex statements
 - ∧ = "and"

• ¬ = "not"

- \implies = "implies" or "if... then"
- \iff = "if and only if"

Propositions, Connectives, and Formulae

- A (logical) proposition is a declarative sentence that can take the value true(*T*) or false(*F*)
 - *P* = "it is raining"
 - *Q* = "I am wearing a jacket"
 - R = "I am soaked"
- logical connectives allow us to combine propositions into more complex statements
 - $\wedge =$ "and" $\implies =$ "implies" or "if...then"
 - $\vee =$ "or" • $\neg =$ "not" • $\iff =$ "if and only if"
- A (Boolean) formula is a statement composed of propositions and logical quantifiers:

$$\varphi = P \land \neg Q \Longrightarrow R$$

A truth table expresses the values of a formula φ for all possible input propositional values

P	Q	$P \wedge Q$	$P \lor Q$	$\neg P$	$P \Longrightarrow Q$	$P \Longleftrightarrow Q$
Т	Т	Т	Т	F	Т	Т
T	F	F	Т	F	F	F
F	Т	F	Т	Т	Т	F
F	F	F	F	Т	Т	Т

We can think of the truth table as *defining* the logical connectives.

Satisfiability

A formula is...

... satisfiable if there is an assignment of truth values to its constituent propositions such that φ evaluates to *T*.

Satisfiability

A formula is...

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that φ evaluates to *T*.
- ... a contradiction if *no* assignment of truth values makes φ evaluate to *T*.

Satisfiability

A formula is...

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that φ evaluates to *T*.
- ... a contradiction if *no* assignment of truth values makes φ evaluate to *T*.
- ... a tautology if *every* assignment of truth values makes φ evaluate to *T*.

A formula is...

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that φ evaluates to *T*.
- ... a contradiction if *no* assignment of truth values makes φ evaluate to *T*.
- ... a tautology if *every* assignment of truth values makes φ evaluate to *T*.

PollEverywhere Question

Which of the following expressions is satisfiable, a contradiction, and a tautology?

- 1. $P \Longrightarrow P \lor Q$
- 2. $(P \land Q) \land (P \Longrightarrow \neg Q)$
- 3. $(P \land \neg Q) \lor (\neg P \land Q)$

pollev.com/comp526

Logical Equivalence

We say that logical formulae φ and ψ are logically equivalent and write $\varphi \equiv \psi$ if $\varphi \iff \psi$ is a tautology.

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \Longrightarrow Q$
- **2**. $\neg (P \land \neg Q)$
- **3.** $\neg P \lor Q$

Logical Equivalence

We say that logical formulae φ and ψ are logically equivalent and write $\varphi \equiv \psi$ if $\varphi \iff \psi$ is a tautology.

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \Longrightarrow Q$
- **2.** $\neg (P \land \neg Q)$
- **3.** $\neg P \lor Q$

More Logical Equivalence

The following expressions are also logically equivalent

- 1. $P \iff Q$
- 2. $(P \Longrightarrow Q) \land (Q \Longrightarrow P)$

Logical Equivalence

We say that logical formulae φ and ψ are logically equivalent and write $\varphi \equiv \psi$ if $\varphi \iff \psi$ is a tautology.

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \Longrightarrow Q$
- **2.** $\neg (P \land \neg Q)$
- **3.** $\neg P \lor Q$

More Logical Equivalence

The following expressions are also logically equivalent

1. $P \iff Q$

2. $(P \Longrightarrow Q) \land (Q \Longrightarrow P)$

Note. Two formulae are logically equivalent precisely when they have the same truth table.

• The two formulas agree on all inputs

Some Important Equivalences

Double Negation

$$P \equiv \neg \neg P$$

DeMorgan's Laws

 $\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\neg (P \lor Q) \equiv \neg P \land \neg Q$

Some Important Equivalences

Double Negation

$$P \equiv \neg \neg P$$

DeMorgan's Laws

 $\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\neg (P \lor Q) \equiv \neg P \land \neg Q$

Exercise

Write a simpler expression equivalent to $\neg(P \Longrightarrow Q)$.

Predicates and Quantifiers

A logical predicate *P* is a function from a domain *U* to the values $\{T, F\}$:

• For each $x \in U$, P(x) is a proposition

Examples of Predicates

- 1. $U = \mathbf{N} = \{0, 1, 2, ...\}, P(x) = "x \text{ is an even number"}$
- 2. U = days of the year, P = "it rained in Liverpool on the day"
- 3. *U* = set of inputs for an algorithm, *P* = algorithm outputs satisfying some property

Predicates and Quantifiers

A logical predicate *P* is a function from a domain *U* to the values $\{T, F\}$:

• For each $x \in U$, P(x) is a proposition

Examples of Predicates

- 1. $U = \mathbf{N} = \{0, 1, 2, ...\}, P(x) = "x \text{ is an even number"}$
- 2. U = days of the year, P = "it rained in Liverpool on the day"
- 3. *U* = set of inputs for an algorithm, *P* = algorithm outputs satisfying some property

Predicates can be quantified to yield new propositions:

- universal quantifier $\forall x P(x)$: "for all x, P(x)"
- existential quantifier $\exists x P(x)$: "there exists *x* such that P(x)"

Negating Quantified Expressions

Quantifiers can be negated as follows:

- $\neg(\forall x \varphi(x)) \iff \exists x \neg \varphi(x)$
- $\neg(\exists x \varphi(x)) \iff \forall x \neg \varphi(x)$

Negating Quantified Expressions

Quantifiers can be negated as follows:

- $\neg(\forall x \varphi(x)) \iff \exists x \neg \varphi(x)$
- $\neg(\exists x \varphi(x)) \iff \forall x \neg \varphi(x)$

Unbounded Sets of Numbers

Suppose *U* is a set of numbers. Consider the formula $\varphi = \forall x \exists y [y > x]$.

- How do you interpret φ ?
- What about its negation $\neg \varphi$?

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences.

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \implies Q$ Direct Proof assume *P* and derive *Q*

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \Longrightarrow Q$ Direct Proof assume *P* and derive *Q* Proof by Contraposition $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \Longrightarrow Q$ Direct Proof assume *P* and derive *Q* Proof by Contraposition $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$ Proof by Contradiction $(P \Longrightarrow Q) \equiv ((P \land \neg Q) \Longrightarrow \text{ false})$

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \Longrightarrow Q$ Direct Proof assume *P* and derive *Q* Proof by Contraposition $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$ Proof by Contradiction $(P \Longrightarrow Q) \equiv ((P \land \neg Q) \Longrightarrow \text{ false})$ Proof by Exhaustion $(P \Longrightarrow Q) \equiv (P \land A \Longrightarrow Q) \land (P \land \neg A \Longrightarrow Q)$ (*A* is any predicate)

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \Longrightarrow Q$ Direct Proof assume P and derive QProof by Contraposition $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$ Proof by Contradiction $(P \Longrightarrow Q) \equiv ((P \land \neg Q) \Longrightarrow \text{ false})$ Proof by Exhaustion $(P \Longrightarrow Q) \equiv (P \land A \Longrightarrow Q) \land (P \land \neg A \Longrightarrow Q)$ (A is any predicate)

Exercise

Show that all of the above are logical equivalences.

Example: Direct Proof

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Direct proof.

• Suppose n^2 is divisible by 4: $n^2 = 4N$ for some natural number *N*.

Example: Direct Proof

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Direct proof.

- Suppose n^2 is divisible by 4: $n^2 = 4N$ for some natural number *N*.
- Since n^2 is divisible by 4, it is also divisible by 2. In particular $n^2 = 2N'$ with N' = 2N.
- Since 2 is a prime number and $N = n \cdot n$ is divisible by *n* is divisible by 2.
 - Fact about prime numbers: if a prime number *p* divides a product *a* · *b*, then *p* divides *a* or *p* divides *b*.
- Since *n* is divisible by 2, *n* is an even number.

Example: Proof by Contraposition

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Proof by Contraposition.

• Suppose *n* is not even, i.e., *n* is odd.

Example: Proof by Contraposition

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Proof by Contraposition.

- Suppose *n* is not even, i.e., *n* is odd.
- Write n = 2k + 1 for some k.
- Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.
- Therefore, n^2 is not divisible by 4.

Example: Proof by Contradiction

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Proof by Contradiction.

• Suppose the statement is false–i.e., that *n*² is divisible by 4 and *n* is not even.

Example: Proof by Contradiction

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Proof by Contradiction.

- Suppose the statement is false–i.e., that *n*² is divisible by 4 and *n* is not even.
- Since *n* is not even, we can write n = 2k + 1.
- Therefore, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.
- However, $4k^2 + 4k + 1 = n^2$ is not divisible by 4, which contradicts the hypothesis that n^2 was divisible by 4.

Example: Proof by Exhaustion

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Proof by Exhaustion.

Use the case C = "n is even."

Example: Proof by Exhaustion

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Proof by Exhaustion.

Use the case C = "n is even."

Case 1 Suppose *n* is even, i.e., n = 2k.

- Then $n^2 = (2k)^2 = 4k^2$.
- Therefore n^2 is divisible by 4
- Since n^2 is divisible by 4 and *n* is even, the conclusion holds.

Example: Proof by Exhaustion

Proposition

Suppose *n* is a natural number. If n^2 is divisible by 4, then *n* is divisible by 2.

Proof by Exhaustion.

```
Use the case C = "n is even."
```

Case 1 Suppose *n* is even, i.e., n = 2k.

- Then $n^2 = (2k)^2 = 4k^2$.
- Therefore n^2 is divisible by 4
- Since n^2 is divisible by 4 and *n* is even, the conclusion holds.

Case 2 Suppose *n* is not even, i.e., n = 2k + 1.

- Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.
- Therefore n^2 is not divisible by 4.
- Since n^2 is not divisible by 4, the conclusion holds.

Evaluating the Proofs

PollEverywhere Question

Which proof seemed simplest/most natural to you?

- Direct Proof
- Proof by Contraposition
- Proof by Contradiction
- Proof by Exhaustion

pollev.com/comp526

Proving the Infinite

So Far

- Generic techniques/strategies for proofs
- Not specific to any particular application domain

Proofs for Algorithms

- Correctness: "For every input *x*, the output of an algorithm *A* on input *x* satisfies {some specification}."
- Running time: "For every input *x*, *A* performs at most {some number} operations on input *x*"

Proving the Infinite

So Far

- Generic techniques/strategies for proofs
- Not specific to any particular application domain

Proofs for Algorithms

- Correctness: "For every input *x*, the output of an algorithm *A* on input *x* satisfies {some specification}."
- Running time: "For every input *x*, *A* performs at most {some number} operations on input *x*"

Two Features

- 1. We must reason about infinite sets of events (i.e., all possible inputs).
- 2. We must infer globally correct behavior by analyzing individual local steps of an algorithm.

Mathematical Induction

The Principle of Mathematical Induction

Let *P* be a predicate over the natural numbers $\mathbf{N} = \{0, 1, 2, ...\}$. Suppose *P* satisfies

- Base case: *P*(0) is true.
- Inductive step: For every $i \in \mathbf{N}$, $P(i) \implies P(i+1)$.

Then for every $n \in \mathbf{N}$, P(n) is true. In strictly symbolic notation:

 $(P(0)) \land (\forall i [P(i) \Longrightarrow P(i+1)]) \Longrightarrow \forall n P(n).$

Mathematical Induction

The Principle of Mathematical Induction

Let *P* be a predicate over the natural numbers $\mathbf{N} = \{0, 1, 2, ...\}$. Suppose *P* satisfies

- Base case: *P*(0) is true.
- Inductive step: For every $i \in \mathbf{N}$, $P(i) \implies P(i+1)$.

Then for every $n \in \mathbf{N}$, P(n) is true. In strictly symbolic notation:

 $(P(0)) \land (\forall i [P(i) \Longrightarrow P(i+1)]) \Longrightarrow \forall n P(n).$

Moral Justification:

Loop Invariants

Given an algorithm *A* containing a loop, a loop invariant is a predicate *P* on the iterations of the loop such that for each iteration *i*, P(i) is satisfied at the end of the *i*-th iteration of the loop.

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the *i*-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

- 1: **procedure** COUNT(*n*) \triangleright count to *n* 2: $t \leftarrow 0$ ▷ iterate over indices
- 3: **for** *i* = 1, ..., *n* **do**
- 4: $t \leftarrow t + 1$
- end for 5:
- 6: return t
- 7: end procedure

Loop Invariants

Given an algorithm *A* containing a loop, a loop invariant is a predicate *P* on the iterations of the loop such that for each iteration *i*, P(i) is satisfied at the end of the *i*-th iteration of the loop.

 \triangleright count to *n*

▷ iterate over indices

An Uninteresting Example

Consider the following procedure

- 1: **procedure** COUNT(*n*)
- 2: $t \leftarrow 0$
- 3: **for** *i* = 1, ..., *n* **do**
- 4: $t \leftarrow t+1$
- 5: **end for**
- 6: return t
- 7: end procedure

Loop Invariant:

After iteration *i*, *t* stores the value *i*.

Given an algorithm *A* containing a loop, a loop invariant is a predicate *P* on the iterations of the loop such that for each iteration *i*, P(i) is satisfied at the end of the *i*-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

- 1: **procedure** COUNT(*n*)
- 2: $t \leftarrow 0$
- 3: **for** *i* = 1, ..., *n* **do**
- 4: $t \leftarrow t+1$
- 5: **end for**
- 6: return t
- 7: end procedure

 \triangleright count to *n*

⊳ iterate over indices

Loop Invariant:

After iteration *i*, *t* stores the value *i*.

Proof.

Induct on *t*. Base case: *t* initialized to 0. Inductive step: clear.

Consider the following subroutine:

- 1: **procedure** MININDEX((*a*, *i*, *k*)) Find the index of the minimum value stored in array *a* between indices *i* and *k*.
- 2: $m \leftarrow i$ 3: for j = i, i + 1, ..., k do 4: if a[j] > a[m] then 5: $m \leftarrow j$ 6: end if 7: end for 8: return m
- 9: end procedure

PollEverywhere Question

What loop invariant does the loop in MININDEX satisfy that will help us analyze its behavior?

pollev.com/comp526

- 1: procedure MININDEX((*a*, *i*, *k*))
 Find the index of the minimum value stored in array *a* between indices *i* and *k*.
- 2: $m \leftarrow i$ 3: for j = i, i + 1, ..., k do 4: if a[j] < a[m] then 5: $m \leftarrow j$ 6: end if 7: end for 8: return m 9: ond proceedure
- 9: end procedure

1: **procedure** MININDEX((*a*, *i*, *k*)) Find the index of the minimum value stored in array *a* between indices *i* and *k*.

2: $m \leftarrow i$

- 3: **for** j = i, i + 1, ..., k **do**
- 4: **if** a[j] < a[m] **then**
- 5: $m \leftarrow j$
- 6: end if
- 7: end for
- 8: **return** m
- 9: end procedure

Loop Invariant

After iteration *j*, *m* stores the index of the minimum value of *a* between indices *i* and *j*.

1: **procedure** MININDEX((*a*, *i*, *k*)) Find the index of the minimum value stored in array *a* between indices *i* and *k*.

2: $m \leftarrow i$

3: **for**
$$j = i, i + 1, ..., k$$
 do

- 4: **if** a[j] < a[m] **then**
- 5: $m \leftarrow j$
- 6: end if
- 7: end for
- 8: return m
- 9: end procedure

Loop Invariant

After iteration *j*, *m* stores the index of the minimum value of *a* between indices *i* and *j*.

Proof.

Induct on j

- Base case: j = i.
- Inductive step: $j \Longrightarrow j+1$

Further Application

Consider the following algorithm that uses MININDEX as a subroutine:

 \triangleright Sort the array *a* of size *n*

- 1: **procedure** SELECTIONSORT(*a*, *n*)
- 2: **for** i = 1, 2, ..., n **do**
- 3: $j \leftarrow \text{MININDEX}(a, i, n)$
- 4: SWAP(*a*, *i*, *j*)
- 5: **end for**
- 6: end procedure

Exercise (Tutorials)

Show that SELECTIONSORT correctly sorts any array *a* of length *n*. Specifically:

- Find a suitable loop invariant satisfied by SELECTIONSORT
- Prove your loop invariant holds (by induction)
- Argue that your loop invariant implies the final array is sorted

Induction and Recursion

Induction is essential in reasoning about recursively defined methods.

A Recursive Method

- 1: **procedure** Mystery(*n*)
- 2: **if** *n* = 1 **then**
- 3: **return** 1
- 4: **end if**
- 5: **return** 2n 1 + MYSTERY(n 1)
- 6: end procedure

PollEverywhereQuestion

What is the output of MYSTERY(5)?

pollev.com/comp526

Analysis of a Mystery

- 1: **procedure** Mystery(*n*)
- 2: **if** *n* = 1 **then**
- 3: **return** 1
- 4: **end if**
- 5: return

2n-1 + MYSTERY(n-1)

6: end procedure

Analysis of a Mystery

- 1: **procedure** Mystery(*n*)
- 2: **if** *n* = 1 **then**
- 3: **return** 1
- 4: **end if**
- 5: return

2n-1 + MYSTERY(n-1)

6: end procedure

Claim

For all n, MYSTERY(n) returns the value n^2 .

Analysis of a Mystery

- 1: **procedure** Mystery(*n*)
- 2: **if** n = 1 **then**
- 3: **return** 1
- 4: **end if**
- 5: return

2n-1 + MYSTERY(n-1)

6: end procedure

Claim

For all n, MYSTERY(n) returns the value n^2 .

Proof.

Induction on *n*. Base Case: n = 1. Inductive step: Suppose MYSTERY(n) = n^2 . Then

MYSTERY(n+1) = 2n+1+ MYSTERY(n) $= 2n+1+n^2$ = $(n+1)^2$.

Next Time

Machines and Models

- What can computers do?
- And how efficiently?

Asymptotic Notation

Scratch Notes