COMP526: Efficient Algorithms

- Your Instructor: Will Rosenbaum George Holt 2.16B [w.rosenbaum @ liverpool.ac.uk](mailto:w.rosenbaum@liverpool.ac.uk)
- Module Website: willrosenbaum.com/teaching/2024f-comp-526
	- The authoritative source for module information about COMP526.
- Poll Everywhere: pollev.com/comp526
	- Used for in-class participation and attendance
	- Use U of L credentials to log in

- CampusWire: <https://campuswire.com/p/GBB00CD7A>
	- Invite code: **4796**
	- Used for announcements and asynchronous discussion (outside of lecture)

Lecture 2: Logic, Proof Techniques & Induction

COMP526: Efficient Algorithms

Will Rosenbaum University of Liverpool

Updated: October 8, 2024

1. First quiz released tomorrow, due Friday

- Administered through Canvas
- One question, multiple choice
- 20 minutes
- Covers basic (today's lecture, this week's tutorial, posted notes)
- 2. Programming Assignment 1 released next week
	- Due 13 November
- 3. Participation Confirmation: Pending
- Motivate the need for proofs in CS
- Introduce the mechanics of propositional and predicate logic
- Describe proof techniques and applications
- Introduce mathematical induction
- Analyze algorithm correctness with loop invariants

5 / 33

A Scenario

The Setup:

- You are contracted by a (virtual) casino to audit their code
- The casino spent millions of £££ developing an AI to play their card games
- They believe their AI is *unbeatable*
	- on average the casino will win
	- this ensures their business is profitable
- The gaming AI company even provided a *mathematical proof* that their strategies will win on average

Photo Credit: OpenAI DALL·E

5 / 33

A Scenario

The Setup:

- You are contracted by a (virtual) casino to audit their code
- The casino spent millions of £££ developing an AI to play their card games
- They believe their AI is *unbeatable*
	- on average the casino will win
	- this ensures their business is profitable
- The gaming AI company even provided a *mathematical proof* that their strategies will win on average

Unfortunately the casino found a group of users that were consistently beating the AI and winning a significant amount of money. Hence, they called in the experts: you!

Photo Credit: OpenAI DALL·E

Shuffling Cards

You find that the casino was using the following procedure to shuffle a (virtual) deck of cards:

-
-
-
-
- 5: **end for**
- 6: **end procedure**

1: **procedure** SHUFFLE (A, n) \triangleright shuffle a deck *A* of *n* cards 2: **for** $i = 1, ..., n$ **do** \triangleright iterate over indices 3: $i \leftarrow$ RANDOM(1, *n*) ρ pick random index 4: SWAP (A, i, j) \triangleright swap values at *i* and *j*

Shuffling Cards

You find that the casino was using the following procedure to shuffle a (virtual) deck of cards:

-
-
-
-
- 5: **end for**
- 6: **end procedure**

1: **procedure** SHUFFLE (A, n) \triangleright shuffle a deck *A* of *n* cards 2: **for** $i = 1, ..., n$ **do** \triangleright iterate over indices 3: $i \leftarrow$ RANDOM(1, *n*) ρ pick random index 4: SWAP (A, i, j) \triangleright swap values at *i* and *j*

PollEverywhere Question

- I think SHUFFLE is fine.
- SHUFFLE is maybe reasonable?
- SHUFFLE is definitely problematic.
- I do not understand SHUFFLE. pollev.com/comp526

Testing Shuffle

What Gives?

What is the problem here?

Challenge 1

Give a *simple* argument that SHUFFLE could not possibly generate all permutations of cards with equal probability.

Challenge 2

Argue that the modified shuffle algorithm on the right does generate a uniformly random shuffling of the elements of *A*.

- 1: **procedure**
	- FYKSHUFFLE(*A*,*n*)
- 2: **for** $i = 1, ..., n$ **do**
- 3: $j \leftarrow$ RANDOM(1, *i*)
- 4: SWAP(*A*,*i*,*j*)
- 5: **end for**
- 6: **end procedure**

A Question

Having found a problem in the SHUFFLE subroutine, who is at fault? The casino? The AI consultant?

A Question

Having found a problem in the SHUFFLE subroutine, who is at fault? The casino? The AI consultant?

The Moral

In order to make trustworthy conclusions about algorithms we must:

- 1. Assert our assumptions about the system
- 2. State our (desired) conclusions precisely
- 3. Argue that our conclusions follow logically from our assumptions

Goal: any system that fulfills our assumptions will also satisfy our conclusions.

- 1. Formal Reasoning through Logic (today)
	- Basic language of logic: propositions and predicates
	- Proof techniques
	- Mathematical induction
- 2. Our Computational Model (Thursday)
- 3. Algorithms (Rest of the Semester)

Propositions, Connectives, and Formulae

- A (logical) proposition is a declarative sentence that can take the value true(T) or false(F)
	- $P =$ "it is raining"
	- *Q* = "I am wearing a jacket"
	- $R = "I$ am soaked"

Propositions, Connectives, and Formulae

- A (logical) proposition is a declarative sentence that can take the value true(T) or false(F)
	- $P =$ "it is raining"
	- *Q* = "I am wearing a jacket"
	- $R =$ "I am soaked"
- logical connectives allow us to combine propositions into more complex statements
	- \wedge = "and"

•
$$
v = "or"
$$

• \neg = "not"

- \implies = "implies" or "if... then"
- \iff = "if and only if"

Propositions, Connectives, and Formulae

- A (logical) proposition is a declarative sentence that can take the value true(T) or false(F)
	- $P =$ "it is raining"
	- *Q* = "I am wearing a jacket"
	- $R =$ "I am soaked"
- logical connectives allow us to combine propositions into more complex statements
	- $\Lambda = \text{``and''}$ • \implies = "implies" or "if... then"
	- $V = "or"$ • \neg = "not" • \iff = "if and only if"
- A (Boolean) formula is a statement composed of propositions and logical quantifiers:

$$
\varphi = P \land \neg Q \Longrightarrow R
$$

A truth table expresses the values of a formula φ for all possible input propositional values

We can think of the truth table as *defining* the logical connectives.

Satisfiability

A formula is. . .

... satisfiable if there is an assignment of truth values to its constituent propositions such that *ϕ* evaluates to *T*.

Satisfiability

A formula is. . .

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that *ϕ* evaluates to *T*.
- . . . a contradiction if *no* assignment of truth values makes *ϕ* evaluate to *T*.

A formula is. . .

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that *ϕ* evaluates to *T*.
- . . . a contradiction if *no* assignment of truth values makes *ϕ* evaluate to *T*.
- . . . a tautology if *every* assignment of truth values makes *ϕ* evaluate to *T*.

A formula is. . .

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that *ϕ* evaluates to *T*.
- . . . a contradiction if *no* assignment of truth values makes *ϕ* evaluate to *T*.
- . . . a tautology if *every* assignment of truth values makes *ϕ* evaluate to *T*.

PollEverywhere Question

Which of the following expressions is satisfiable, a contradiction, and a tautology?

- 1. $P \implies P \lor Q$
- 2. $(P \land Q) \land (P \implies \neg Q)$
- 3. (*P* ∧ ¬*Q*)∨(¬*P* ∧*Q*)

pollev.com/comp526

Logical Equivalence

We say that logical formulae *ϕ* and *ψ* are logically equivalent and write $\varphi \equiv \psi$ if $\varphi \iff \psi$ is a tautology.

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \implies Q$
- 2. ¬(P ∧ ¬ *Q*)
- 3. ¬*P* ∨*Q*

Logical Equivalence

We say that logical formulae *ϕ* and *ψ* are logically equivalent and write $\varphi \equiv \psi$ if $\varphi \iff \psi$ is a tautology.

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \implies Q$
- 2. ¬(P ∧ ¬ *Q*)
- 3. ¬*P* ∨*Q*

More Logical Equivalence

The following expressions are also logically equivalent

- 1. $P \Leftrightarrow Q$
- 2. $(P \implies Q) \land (Q \implies P)$

Logical Equivalence

We say that logical formulae *ϕ* and *ψ* are logically equivalent and write $\varphi \equiv \psi$ if $\varphi \iff \psi$ is a tautology.

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \implies Q$
- 2. ¬(P ∧ ¬ O)
- 3. ¬*P* ∨*Q*

More Logical Equivalence

The following expressions are also logically equivalent

1. $P \Leftrightarrow Q$

2. $(P \implies Q) \land (Q \implies P)$

Note. Two formulae are logically equivalent precisely when they have the same truth table.

• The two formulas agree on all inputs

Some Important Equivalences

Double Negation

$$
P\equiv \neg \neg P
$$

DeMorgan's Laws

¬(*P* ∧*Q*) ≡ ¬*P* ∨ ¬*Q* ¬(*P* ∨*Q*) ≡ ¬*P* ∧ ¬*Q*

Some Important Equivalences

Double Negation

$$
P\equiv \neg \neg P
$$

DeMorgan's Laws

¬(*P* ∧*Q*) ≡ ¬*P* ∨ ¬*Q* ¬(*P* ∨*Q*) ≡ ¬*P* ∧ ¬*Q*

Exercise

Write a simpler expression equivalent to $\neg (P \implies Q)$.

Predicates and Quantifiers

A logical predicate *P* is a function from a domain *U* to the values {*T*,*F*}:

• For each $x \in U$, $P(x)$ is a proposition

Examples of Predicates

- 1. $U = N = \{0, 1, 2, ...\}$, $P(x) = "x$ is an even number"
- 2. $U = \text{days of the year, } P = \text{``it rained in Liverpool on the day''}$
- 3. *U* = set of inputs for an algorithm, *P* = algorithm outputs satisfying some property

Predicates and Quantifiers

A logical predicate *P* is a function from a domain *U* to the values {*T*,*F*}:

• For each $x \in U$, $P(x)$ is a proposition

Examples of Predicates

- 1. $U = N = \{0, 1, 2, ...\}$, $P(x) = "x$ is an even number"
- 2. $U = \text{days of the year, } P = \text{``it rained in Liverpool on the day''}$
- 3. *U* = set of inputs for an algorithm, *P* = algorithm outputs satisfying some property

Predicates can be quantified to yield new propositions:

- universal quantifier ∀*xP*(*x*): "for all *x*, *P*(*x*)"
- existential quantifier ∃*xP*(*x*): "there exists *x* such that *P*(*x*)"

Negating Quantified Expressions

Quantifiers can be negated as follows:

- \rightarrow ¬(∀*xϕ*(*x*)) \Longleftrightarrow ∃*x*¬ ϕ (*x*)
- \rightarrow ¬($\exists x \varphi(x)$) $\Longleftrightarrow \forall x \neg \varphi(x)$

Negating Quantified Expressions

Quantifiers can be negated as follows:

- \rightarrow ¬(∀*xϕ*(*x*)) \Longleftrightarrow ∃*x*¬ ϕ (*x*)
- \rightarrow ¬($\exists x \varphi(x)$) $\Longleftrightarrow \forall x \neg \varphi(x)$

Unbounded Sets of Numbers

Suppose *U* is a set of numbers. Consider the formula $\varphi = \forall x \exists y [y > x]$.

- How do you interpret *ϕ*?
- What about its negation ¬*ϕ*?

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences.

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \implies Q$ Direct Proof assume *P* and derive *Q*

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \implies Q$ Direct Proof assume *P* and derive *Q* Proof by Contraposition $(P \implies Q) \equiv (\neg Q \implies \neg P)$

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \implies Q$ Direct Proof assume *P* and derive *Q* Proof by Contraposition $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Proof by Contradiction $(P \implies Q) \equiv ((P \land \neg Q) \implies false)$

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \implies Q$ Direct Proof assume *P* and derive *Q* Proof by Contraposition $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Proof by Contradiction $(P \implies Q) \equiv ((P \land \neg Q) \implies false)$ Proof by Exhaustion $(P \implies Q) \equiv (P \land A \implies Q) \land (P \land \neg A \implies Q)$ (*A* is any predicate)

Recall: our main goal is to show that

$\{assumptions\} \implies \{conclusions\}$

Proof techniques are *logical strategies* for deriving logical inferences. Techniques for proving $P \implies Q$ Direct Proof assume *P* and derive *Q* Proof by Contraposition $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Proof by Contradiction $(P \implies Q) \equiv ((P \land \neg Q) \implies false)$ Proof by Exhaustion $(P \implies Q) \equiv (P \land A \implies Q) \land (P \land \neg A \implies Q)$ (*A* is any predicate)

Exercise

Show that all of the above are logical equivalences.

Example: Direct Proof

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Direct proof.

• Suppose n^2 is divisible by 4: $n^2 = 4N$ for some natural number *N*.

Example: Direct Proof

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Direct proof.

- Suppose n^2 is divisible by 4: $n^2 = 4N$ for some natural number *N*.
- Since n^2 is divisible by 4, it is also divisible by 2. In particular $n^2 = 2N'$ with $N' = 2N$.
- Since 2 is a prime number and $N = n \cdot n$ is divisible by *n* is divisible by 2.
	- Fact about prime numbers: if a prime number *p* divides a product *a*·*b*, then *p* divides *a* or *p* divides *b*.
- Since *n* is divisible by 2, *n* is an even number.

П

Example: Proof by Contraposition

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Contraposition.

• Suppose *n* is not even, i.e., *n* is odd.

Example: Proof by Contraposition

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Contraposition.

- Suppose *n* is not even, i.e., *n* is odd.
- Write $n = 2k + 1$ for some k .
- Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.
- Therefore, n^2 is not divisible by 4.

П

Example: Proof by Contradiction

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Contradiction.

• Suppose the statement is false-i.e., that n^2 is divisible by 4 and n is not even.

Example: Proof by Contradiction

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Contradiction.

- Suppose the statement is false-i.e., that n^2 is divisible by 4 and n is not even.
- Since *n* is not even, we can write $n = 2k + 1$.
- Therefore, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.
- However, $4k^2 + 4k + 1 = n^2$ is not divisible by 4, which contradicts the hypothesis that n^2 was divisible by 4.

П

Example: Proof by Exhaustion

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Exhaustion.

Use the case $C = "n$ is even."

Example: Proof by Exhaustion

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Exhaustion.

Use the case $C = "n$ is even."

Case 1 Suppose *n* is even, i.e., $n = 2k$.

- Then $n^2 = (2k)^2 = 4k^2$.
- Therefore n^2 is divisible by 4
- Since n^2 is divisible by 4 and *n* is even, the conclusion holds.

Example: Proof by Exhaustion

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Exhaustion.

```
Use the case C = "n is even."
```
Case 1 Suppose *n* is even, i.e., $n = 2k$.

- Then $n^2 = (2k)^2 = 4k^2$.
- Therefore n^2 is divisible by 4
- Since n^2 is divisible by 4 and *n* is even, the conclusion holds.

Case 2 Suppose *n* is not even, i.e., $n = 2k + 1$.

- Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.
- Therefore n^2 is not divisible by 4.
- Since n^2 is not divisible by 4, the conclusion holds.

PollEverywhere Question

Which proof seemed simplest/most natural to you?

- Direct Proof
- Proof by Contraposition
- Proof by Contradiction
-

• Proof by Exhaustion pollev.com/comp526

Proving the Infinite

So Far

- *Generic* techniques/strategies for proofs
- Not specific to any particular application domain

Proofs for Algorithms

- Correctness: "For every input *x*, the output of an algorithm *A* on input *x* satisfies {some specification}."
- Running time: "For every input *x*, *A* performs at most {some number} operations on input *x*"

Proving the Infinite

So Far

- *Generic* techniques/strategies for proofs
- Not specific to any particular application domain

Proofs for Algorithms

- Correctness: "For every input *x*, the output of an algorithm *A* on input *x* satisfies {some specification}."
- Running time: "For every input *x*, *A* performs at most {some number} operations on input *x*"

Two Features

- 1. We must reason about infinite sets of events (i.e., all possible inputs).
- 2. We must infer globally correct behavior by analyzing individual local steps of an algorithm.

Mathematical Induction

The Principle of Mathematical Induction

Let *P* be a predicate over the natural numbers $N = \{0, 1, 2, ...\}$. Suppose *P* satisfies

- Base case: *P*(0) is true.
- Inductive step: For every $i \in \mathbb{N}$, $P(i) \implies P(i+1)$.

Then for every $n \in \mathbb{N}$, $P(n)$ is true. In strictly symbolic notation:

 $(P(0)) \wedge (\forall i[P(i) \implies P(i+1)]) \implies \forall n P(n).$

Mathematical Induction

The Principle of Mathematical Induction

Let *P* be a predicate over the natural numbers $N = \{0, 1, 2, ...\}$. Suppose *P* satisfies

- Base case: *P*(0) is true.
- Inductive step: For every $i \in \mathbb{N}$, $P(i) \implies P(i+1)$.

Then for every $n \in \mathbb{N}$, $P(n)$ is true. In strictly symbolic notation:

 $(P(0)) \wedge (\forall i[P(i) \implies P(i+1)]) \implies \forall n P(n).$

Moral Justification:

Given an algorithm *A* containing a loop, a loop invariant is a predicate *P* on the iterations of the loop such that for each iteration *i*, *P*(*i*) is satisfied at the end of the *i*-th iteration of the loop.

Given an algorithm *A* containing a loop, a loop invariant is a predicate *P* on the iterations of the loop such that for each iteration *i*, *P*(*i*) is satisfied at the end of the *i*-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

- 1: **procedure** $COUNT(n) \rightarrow$ count to *n* 2: $t \leftarrow 0$
- 3: **for** $i = 1, ..., n$ **do** \triangleright iterate over indices
- 4: $t \leftarrow t+1$
- 5: **end for**
- 6: **return** t
- 7: **end procedure**

Given an algorithm *A* containing a loop, a loop invariant is a predicate *P* on the iterations of the loop such that for each iteration *i*, *P*(*i*) is satisfied at the end of the *i*-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

- 1: **procedure** $COUNT(n)$ \triangleright count to *n*
- 2: $t \leftarrow 0$
- 3: **for** $i = 1, ..., n$ **do** \triangleright iterate over indices
- 4: $t \leftarrow t+1$
- 5: **end for**
- 6: **return** t
- 7: **end procedure**

Loop Invariant:

After iteration *i*, *t* stores the value *i*.

Given an algorithm *A* containing a loop, a loop invariant is a predicate *P* on the iterations of the loop such that for each iteration *i*, *P*(*i*) is satisfied at the end of the *i*-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

- 1: **procedure** $COUNT(n) \rightarrow$ count to *n*
- 2: $t \leftarrow 0$
- 3: **for** $i = 1, ..., n$ **do** \triangleright iterate over indices
- 4: $t \leftarrow t+1$
- 5: **end for**
- 6: **return** t
- 7: **end procedure**

Loop Invariant:

After iteration *i*, *t* stores the value *i*.

Proof.

Induct on *t*. Base case: *t* initialized to 0. Inductive step: clear. \Box

Consider the following subroutine:

- 1: **procedure** MININDEX $((a, i, k)) \rightarrow$ Find the index of the minimum value stored in array *a* between indices *i* and *k*.
- 2: $m \leftarrow i$ 3: **for** $j = i, i + 1, ..., k$ **do** 4: **if** $a[i] > a[m]$ **then** 5: $m \leftarrow j$ 6: **end if** 7: **end for** 8: **return** m 9: **end procedure**

PollEverywhere Question

What loop invariant does the loop in MININDEX satisfy that will help us analyze its behavior?

pollev.com/comp526

- 1: **procedure** MININDEX $((a, i, k)) \rightarrow$ Find the index of the minimum value stored in array *a* between indices *i* and *k*.
- 2: $m \leftarrow i$ 3: **for** $j = i, i + 1, ..., k$ **do** 4: **if** $a[i] < a[m]$ then 5: $m \leftarrow j$ 6: **end if** 7: **end for** 8: **return** m 9: **end procedure**

1: **procedure** MININDEX $((a, i, k)) \rightarrow \triangleright$ Find the index of the minimum value stored in array *a* between indices *i* and *k*.

2: $m \leftarrow i$

- 3: **for** $j = i, i + 1, ..., k$ **do**
- 4: **if** $a[j] < a[m]$ then

5: $m \leftarrow j$

- 6: **end if**
- 7: **end for**
- 8: **return** m
- 9: **end procedure**

Loop Invariant

After iteration *j*, *m* stores the index of the minimum value of *a* between indices *i* and *j*.

1: **procedure** MININDEX $((a, i, k)) \rightarrow$ Find the index of the minimum value stored in array *a* between indices *i* and *k*.

2: $m \leftarrow i$

3: **for**
$$
j = i, i + 1, ..., k
$$
 do

4: **if** $a[i] < a[m]$ then

5: $m \leftarrow j$

- 6: **end if**
- 7: **end for**
- 8: **return** m

9: **end procedure**

Loop Invariant

After iteration *j*, *m* stores the index of the minimum value of *a* between indices *i* and *j*.

Proof.

Induct on *j*

- Base case: $i = i$.
- Inductive step: $j \implies j+1$

П

Further Application

Consider the following algorithm that uses MININDEX as a subroutine:

- 1: **procedure** SELECTIONSORT (a, n) \triangleright Sort the array *a* of size *n*
- 2: **for** $i = 1, 2, ..., n$ **do**
- 3: $j \leftarrow \text{MININDEX}(a, i, n)$
- 4: SWAP(*a*,*i*,*j*)
- 5: **end for**
- 6: **end procedure**

Exercise (Tutorials)

Show that SELECTIONSORT correctly sorts any array *a* of length *n*. Specifically:

- Find a suitable loop invariant satisfied by SELECTIONSORT
- Prove your loop invariant holds (by induction)
- Argue that your loop invariant implies the final array is sorted

Induction and Recursion

Induction is essential in reasoning about *recursively defined* methods.

A Recursive Method

- 1: **procedure** MYSTERY(*n*)
- 2: **if** $n = 1$ **then**
- 3: **return** 1
- 4: **end if**
- 5: **return** 2*n*−1+ MYSTERY(*n*−1)
- 6: **end procedure**

PollEverywhereQuestion

What is the output of MYSTERY(5)?

pollev.com/comp526

Analysis of a Mystery

- 1: **procedure** MYSTERY(*n*)
- 2: **if** $n = 1$ **then**
- 3: **return** 1
- 4: **end if**
- 5: **return**

2*n*−1+ MYSTERY(*n*−1)

6: **end procedure**

Analysis of a Mystery

- 1: **procedure** MYSTERY(*n*)
- 2: **if** $n = 1$ **then**
- 3: **return** 1
- 4: **end if**
- 5: **return**

2*n*−1+ MYSTERY(*n*−1)

6: **end procedure**

Claim

For all *n*, MYSTERY(*n*) returns the value n^2 .

Analysis of a Mystery

- 1: **procedure** MYSTERY(*n*)
- 2: **if** $n = 1$ **then**
- 3: **return** 1
- 4: **end if**
- 5: **return**

2*n*−1+ MYSTERY(*n*−1)

6: **end procedure**

Claim

For all *n*, MYSTERY(*n*) returns the value n^2 .

Proof.

Induction on *n*. Base Case: *n* = 1. Inductive step: Suppose M YSTERY $(n) = n^2$. Then

 M YSTERY $(n + 1) = 2n + 1$

+ MYSTERY(*n*)

$$
=2n+1+n^2
$$

П

Next Time

• Machines and Models

- What can computers do?
- And how efficiently?

• Asymptotic Notation

Scratch Notes