
COMP526: Efficient Algorithms
• Your Instructor:

Will Rosenbaum
George Holt 2.16B
w.rosenbaum @ liverpool.ac.uk

• Module Website:
willrosenbaum.com/teaching/2024f-comp-526

• The authoritative source for module information about COMP526.

• Poll Everywhere: pollev.com/comp526
• Used for in-class participation and

attendance
• Use U of L credentials to log in

• CampusWire: https://campuswire.com/p/GBB00CD7A
• Invite code: 4796
• Used for announcements and asynchronous discussion (outside of

lecture)

1 / 33

mailto:w.rosenbaum@liverpool.ac.uk
https://willrosenbaum.com/teaching/2024f-comp-526/
https://pollev.com/comp526
https://campuswire.com/p/GBB00CD7A


Lecture 2: Logic, Proof
Techniques & Induction
COMP526: Efficient Algorithms

Updated: October 8, 2024
Will Rosenbaum
University of Liverpool

2 / 33



Announcements

1. First quiz released tomorrow, due Friday
• Administered through Canvas
• One question, multiple choice
• 20 minutes
• Covers basic (today’s lecture, this week’s tutorial, posted notes)

2. Programming Assignment 1 released next
week

• Due 13 November

3. Participation Confirmation: Pending

3 / 33



Meeting Goals

• Motivate the need for proofs in CS

• Introduce the mechanics of propositional and predicate logic

• Describe proof techniques and applications

• Introduce mathematical induction

• Analyze algorithm correctness with loop invariants

4 / 33



A Scenario
The Setup:

• You are contracted by a (virtual) casino to
audit their code

• The casino spent millions of £££ developing
an AI to play their card games

• They believe their AI is unbeatable
• on average the casino will win
• this ensures their business is profitable

• The gaming AI company even provided a
mathematical proof that their strategies will
win on average

Photo Credit: OpenAI DALL·E

Unfortunately the casino found a group of users that were
consistently beating the AI and winning a significant amount of
money. Hence, they called in the experts: you!

5 / 33



A Scenario
The Setup:

• You are contracted by a (virtual) casino to
audit their code

• The casino spent millions of £££ developing
an AI to play their card games

• They believe their AI is unbeatable
• on average the casino will win
• this ensures their business is profitable

• The gaming AI company even provided a
mathematical proof that their strategies will
win on average

Photo Credit: OpenAI DALL·E

Unfortunately the casino found a group of users that were
consistently beating the AI and winning a significant amount of
money. Hence, they called in the experts: you!

5 / 33



Shuffling Cards
You find that the casino was using the following procedure to shuffle a
(virtual) deck of cards:

1: procedure SHUFFLE(A,n) ▷ shuffle a deck A of n cards
2: for i = 1, . . . ,n do ▷ iterate over indices
3: j ← RANDOM(1,n) ▷ pick random index
4: SWAP(A, i, j) ▷ swap values at i and j
5: end for
6: end procedure

PollEverywhere Question
• I think SHUFFLE is fine.

• SHUFFLE is maybe reasonable?

• SHUFFLE is definitely problematic.

• I do not understand SHUFFLE. pollev.com/comp526

6 / 33

https://pollev.com/comp526


Shuffling Cards
You find that the casino was using the following procedure to shuffle a
(virtual) deck of cards:

1: procedure SHUFFLE(A,n) ▷ shuffle a deck A of n cards
2: for i = 1, . . . ,n do ▷ iterate over indices
3: j ← RANDOM(1,n) ▷ pick random index
4: SWAP(A, i, j) ▷ swap values at i and j
5: end for
6: end procedure

PollEverywhere Question
• I think SHUFFLE is fine.

• SHUFFLE is maybe reasonable?

• SHUFFLE is definitely problematic.

• I do not understand SHUFFLE. pollev.com/comp526
6 / 33

https://pollev.com/comp526


Testing Shuffle

1
n!

p(σ)

σ

What Gives?
What is the problem here?

7 / 33



Two Challenges

Challenge 1

Give a simple argument that SHUFFLE could not possibly generate all
permutations of cards with equal probability.

Challenge 2

Argue that the modified shuffle
algorithm on the right does
generate a uniformly random
shuffling of the elements of A.

1: procedure
FYKSHUFFLE(A,n)

2: for i = 1, . . . ,n do
3: j ← RANDOM(1, i)
4: SWAP(A, i, j)
5: end for
6: end procedure

8 / 33



Who is to Blame?

A Question

Having found a problem in the SHUFFLE subroutine, who is at fault?
The casino? The AI consultant?

The Moral
In order to make trustworthy conclusions about algorithms we must:

1. Assert our assumptions about the system

2. State our (desired) conclusions precisely

3. Argue that our conclusions follow logically from our assumptions

Goal: any system that fulfills our assumptions will also satisfy our
conclusions.

9 / 33



Who is to Blame?

A Question

Having found a problem in the SHUFFLE subroutine, who is at fault?
The casino? The AI consultant?

The Moral
In order to make trustworthy conclusions about algorithms we must:

1. Assert our assumptions about the system

2. State our (desired) conclusions precisely

3. Argue that our conclusions follow logically from our assumptions

Goal: any system that fulfills our assumptions will also satisfy our
conclusions.

9 / 33



Roadmap

1. Formal Reasoning through Logic (today)
• Basic language of logic: propositions and predicates
• Proof techniques
• Mathematical induction

2. Our Computational Model (Thursday)

3. Algorithms (Rest of the Semester)

10 / 33



Propositions, Connectives, and Formulae
• A (logical) proposition is a declarative sentence that can take the

value true(T) or false(F)
• P = “it is raining”
• Q = “I am wearing a jacket”
• R = “I am soaked”

• logical connectives allow us to combine propositions into more
complex statements

• ∧= “and”
• ∨= “or”
• ¬= “not”

• =⇒= “implies” or “if. . . then”

• ⇐⇒= “if and only if”

• A (Boolean) formula is a statement composed of propositions and
logical quantifiers:

ϕ= P∧¬Q =⇒ R

11 / 33



Propositions, Connectives, and Formulae
• A (logical) proposition is a declarative sentence that can take the

value true(T) or false(F)
• P = “it is raining”
• Q = “I am wearing a jacket”
• R = “I am soaked”

• logical connectives allow us to combine propositions into more
complex statements

• ∧= “and”
• ∨= “or”
• ¬= “not”

• =⇒= “implies” or “if. . . then”

• ⇐⇒= “if and only if”

• A (Boolean) formula is a statement composed of propositions and
logical quantifiers:

ϕ= P∧¬Q =⇒ R

11 / 33



Propositions, Connectives, and Formulae
• A (logical) proposition is a declarative sentence that can take the

value true(T) or false(F)
• P = “it is raining”
• Q = “I am wearing a jacket”
• R = “I am soaked”

• logical connectives allow us to combine propositions into more
complex statements

• ∧= “and”
• ∨= “or”
• ¬= “not”

• =⇒= “implies” or “if. . . then”

• ⇐⇒= “if and only if”

• A (Boolean) formula is a statement composed of propositions and
logical quantifiers:

ϕ= P∧¬Q =⇒ R

11 / 33



Truth Tables

A truth table expresses the values of a formula ϕ for all possible input
propositional values

P Q P∧Q P∨Q ¬P P =⇒ Q P ⇐⇒ Q
T T T T F T T
T F F T F F F
F T F T T T F
F F F F T T T

We can think of the truth table as defining the logical connectives.

12 / 33



Satisfiability
A formula is. . .

. . . satisfiable if there is an assignment of truth values to its
constituent propositions such that ϕ evaluates to T .

. . . a contradiction if no assignment of truth values makes ϕ evaluate
to T .

. . . a tautology if every assignment of truth values makes ϕ evaluate
to T .

PollEverywhere Question

Which of the following expressions is satisfiable,
a contradiction, and a tautology?

1. P =⇒ P∨Q

2. (P∧Q)∧ (P =⇒ ¬Q)

3. (P∧¬Q)∨ (¬P∧Q) pollev.com/comp526

13 / 33

https://pollev.com/comp526


Satisfiability
A formula is. . .

. . . satisfiable if there is an assignment of truth values to its
constituent propositions such that ϕ evaluates to T .

. . . a contradiction if no assignment of truth values makes ϕ evaluate
to T .

. . . a tautology if every assignment of truth values makes ϕ evaluate
to T .

PollEverywhere Question

Which of the following expressions is satisfiable,
a contradiction, and a tautology?

1. P =⇒ P∨Q

2. (P∧Q)∧ (P =⇒ ¬Q)

3. (P∧¬Q)∨ (¬P∧Q) pollev.com/comp526

13 / 33

https://pollev.com/comp526


Satisfiability
A formula is. . .

. . . satisfiable if there is an assignment of truth values to its
constituent propositions such that ϕ evaluates to T .

. . . a contradiction if no assignment of truth values makes ϕ evaluate
to T .

. . . a tautology if every assignment of truth values makes ϕ evaluate
to T .

PollEverywhere Question

Which of the following expressions is satisfiable,
a contradiction, and a tautology?

1. P =⇒ P∨Q

2. (P∧Q)∧ (P =⇒ ¬Q)

3. (P∧¬Q)∨ (¬P∧Q) pollev.com/comp526

13 / 33

https://pollev.com/comp526


Satisfiability
A formula is. . .

. . . satisfiable if there is an assignment of truth values to its
constituent propositions such that ϕ evaluates to T .

. . . a contradiction if no assignment of truth values makes ϕ evaluate
to T .

. . . a tautology if every assignment of truth values makes ϕ evaluate
to T .

PollEverywhere Question

Which of the following expressions is satisfiable,
a contradiction, and a tautology?

1. P =⇒ P∨Q

2. (P∧Q)∧ (P =⇒ ¬Q)

3. (P∧¬Q)∨ (¬P∧Q) pollev.com/comp526

13 / 33

https://pollev.com/comp526


Logical Equivalence
We say that logical formulae ϕ and ψ are logically equivalent and write
ϕ≡ψ if ϕ ⇐⇒ ψ is a tautology.

Logically Equivalent to Implication
The following expressions are logically equivalent

1. P =⇒ Q

2. ¬(P∧¬Q)

3. ¬P∨Q

More Logical Equivalence
The following expressions are also logically equivalent

1. P ⇐⇒ Q

2. (P =⇒ Q)∧ (Q =⇒ P)

Note. Two formulae are logically equivalent precisely when they have
the same truth table.

• The two formulas agree on all inputs

14 / 33



Logical Equivalence
We say that logical formulae ϕ and ψ are logically equivalent and write
ϕ≡ψ if ϕ ⇐⇒ ψ is a tautology.

Logically Equivalent to Implication
The following expressions are logically equivalent

1. P =⇒ Q

2. ¬(P∧¬Q)

3. ¬P∨Q

More Logical Equivalence
The following expressions are also logically equivalent

1. P ⇐⇒ Q

2. (P =⇒ Q)∧ (Q =⇒ P)

Note. Two formulae are logically equivalent precisely when they have
the same truth table.

• The two formulas agree on all inputs

14 / 33



Logical Equivalence
We say that logical formulae ϕ and ψ are logically equivalent and write
ϕ≡ψ if ϕ ⇐⇒ ψ is a tautology.

Logically Equivalent to Implication
The following expressions are logically equivalent

1. P =⇒ Q

2. ¬(P∧¬Q)

3. ¬P∨Q

More Logical Equivalence
The following expressions are also logically equivalent

1. P ⇐⇒ Q

2. (P =⇒ Q)∧ (Q =⇒ P)

Note. Two formulae are logically equivalent precisely when they have
the same truth table.

• The two formulas agree on all inputs
14 / 33



Some Important Equivalences

Double Negation

P ≡¬¬P

DeMorgan’s Laws

¬(P∧Q) ≡¬P∨¬Q
¬(P∨Q) ≡¬P∧¬Q

Exercise
Write a simpler expression equivalent to ¬(P =⇒ Q).

15 / 33



Some Important Equivalences

Double Negation

P ≡¬¬P

DeMorgan’s Laws

¬(P∧Q) ≡¬P∨¬Q
¬(P∨Q) ≡¬P∧¬Q

Exercise
Write a simpler expression equivalent to ¬(P =⇒ Q).

15 / 33



Predicates and Quantifiers

A logical predicate P is a function from a domain U to the values {T ,F}:

• For each x ∈ U , P(x) is a proposition

Examples of Predicates

1. U = N = {0,1,2, . . .}, P(x) = “x is an even number”

2. U = days of the year, P = “it rained in Liverpool on the day”

3. U = set of inputs for an algorithm, P = algorithm outputs
satisfying some property

Predicates can be quantified to yield new propositions:

• universal quantifier ∀xP(x): “for all x, P(x)”

• existential quantifier ∃xP(x): “there exists x such that P(x)”

16 / 33



Predicates and Quantifiers

A logical predicate P is a function from a domain U to the values {T ,F}:

• For each x ∈ U , P(x) is a proposition

Examples of Predicates

1. U = N = {0,1,2, . . .}, P(x) = “x is an even number”

2. U = days of the year, P = “it rained in Liverpool on the day”

3. U = set of inputs for an algorithm, P = algorithm outputs
satisfying some property

Predicates can be quantified to yield new propositions:

• universal quantifier ∀xP(x): “for all x, P(x)”

• existential quantifier ∃xP(x): “there exists x such that P(x)”

16 / 33



Negating Quantified Expressions
Quantifiers can be negated as follows:

• ¬(∀xϕ(x)) ⇐⇒ ∃x¬ϕ(x)

• ¬(∃xϕ(x)) ⇐⇒ ∀x¬ϕ(x)

Unbounded Sets of Numbers
Suppose U is a set of numbers. Consider the formula ϕ=∀x∃y[y > x].

• How do you interpret ϕ?

• What about its negation ¬ϕ?

17 / 33



Negating Quantified Expressions
Quantifiers can be negated as follows:

• ¬(∀xϕ(x)) ⇐⇒ ∃x¬ϕ(x)

• ¬(∃xϕ(x)) ⇐⇒ ∀x¬ϕ(x)

Unbounded Sets of Numbers
Suppose U is a set of numbers. Consider the formula ϕ=∀x∃y[y > x].

• How do you interpret ϕ?

• What about its negation ¬ϕ?

17 / 33



Logical Equivalence and Proof Techniques
Recall: our main goal is to show that{

assumptions
} =⇒ {conclusions}

Proof techniques are logical strategies for deriving logical inferences.

Techniques for proving P =⇒ Q

Direct Proof assume P and derive Q

Proof by Contraposition (P =⇒ Q) ≡ (¬Q =⇒ ¬P)

Proof by Contradiction (P =⇒ Q) ≡ ((P∧¬Q) =⇒ false)

Proof by Exhaustion (P =⇒ Q) ≡ (P∧A =⇒ Q)∧ (P∧¬A =⇒ Q) (A is
any predicate)

Exercise
Show that all of the above are logical equivalences.

18 / 33



Logical Equivalence and Proof Techniques
Recall: our main goal is to show that{

assumptions
} =⇒ {conclusions}

Proof techniques are logical strategies for deriving logical inferences.

Techniques for proving P =⇒ Q

Direct Proof assume P and derive Q

Proof by Contraposition (P =⇒ Q) ≡ (¬Q =⇒ ¬P)

Proof by Contradiction (P =⇒ Q) ≡ ((P∧¬Q) =⇒ false)

Proof by Exhaustion (P =⇒ Q) ≡ (P∧A =⇒ Q)∧ (P∧¬A =⇒ Q) (A is
any predicate)

Exercise
Show that all of the above are logical equivalences.

18 / 33



Logical Equivalence and Proof Techniques
Recall: our main goal is to show that{

assumptions
} =⇒ {conclusions}

Proof techniques are logical strategies for deriving logical inferences.

Techniques for proving P =⇒ Q

Direct Proof assume P and derive Q

Proof by Contraposition (P =⇒ Q) ≡ (¬Q =⇒ ¬P)

Proof by Contradiction (P =⇒ Q) ≡ ((P∧¬Q) =⇒ false)

Proof by Exhaustion (P =⇒ Q) ≡ (P∧A =⇒ Q)∧ (P∧¬A =⇒ Q) (A is
any predicate)

Exercise
Show that all of the above are logical equivalences.

18 / 33



Logical Equivalence and Proof Techniques
Recall: our main goal is to show that{

assumptions
} =⇒ {conclusions}

Proof techniques are logical strategies for deriving logical inferences.

Techniques for proving P =⇒ Q

Direct Proof assume P and derive Q

Proof by Contraposition (P =⇒ Q) ≡ (¬Q =⇒ ¬P)

Proof by Contradiction (P =⇒ Q) ≡ ((P∧¬Q) =⇒ false)

Proof by Exhaustion (P =⇒ Q) ≡ (P∧A =⇒ Q)∧ (P∧¬A =⇒ Q) (A is
any predicate)

Exercise
Show that all of the above are logical equivalences.

18 / 33



Logical Equivalence and Proof Techniques
Recall: our main goal is to show that{

assumptions
} =⇒ {conclusions}

Proof techniques are logical strategies for deriving logical inferences.

Techniques for proving P =⇒ Q

Direct Proof assume P and derive Q

Proof by Contraposition (P =⇒ Q) ≡ (¬Q =⇒ ¬P)

Proof by Contradiction (P =⇒ Q) ≡ ((P∧¬Q) =⇒ false)

Proof by Exhaustion (P =⇒ Q) ≡ (P∧A =⇒ Q)∧ (P∧¬A =⇒ Q) (A is
any predicate)

Exercise
Show that all of the above are logical equivalences.

18 / 33



Logical Equivalence and Proof Techniques
Recall: our main goal is to show that{

assumptions
} =⇒ {conclusions}

Proof techniques are logical strategies for deriving logical inferences.

Techniques for proving P =⇒ Q

Direct Proof assume P and derive Q

Proof by Contraposition (P =⇒ Q) ≡ (¬Q =⇒ ¬P)

Proof by Contradiction (P =⇒ Q) ≡ ((P∧¬Q) =⇒ false)

Proof by Exhaustion (P =⇒ Q) ≡ (P∧A =⇒ Q)∧ (P∧¬A =⇒ Q) (A is
any predicate)

Exercise
Show that all of the above are logical equivalences.

18 / 33



Example: Direct Proof
Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Direct proof.

• Suppose n2 is divisible by 4: n2 = 4N for some natural number N .

• Since n2 is divisible by 4, it is also divisible by 2. In particular
n2 = 2N ′ with N ′ = 2N .

• Since 2 is a prime number and N = n ·n is divisible by n is divisible
by 2.

• Fact about prime numbers: if a prime number p divides a product
a ·b, then p divides a or p divides b.

• Since n is divisible by 2, n is an even number.

19 / 33



Example: Direct Proof
Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Direct proof.

• Suppose n2 is divisible by 4: n2 = 4N for some natural number N .

• Since n2 is divisible by 4, it is also divisible by 2. In particular
n2 = 2N ′ with N ′ = 2N .

• Since 2 is a prime number and N = n ·n is divisible by n is divisible
by 2.

• Fact about prime numbers: if a prime number p divides a product
a ·b, then p divides a or p divides b.

• Since n is divisible by 2, n is an even number.

19 / 33



Example: Proof by Contraposition

Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Proof by Contraposition.
• Suppose n is not even, i.e., n is odd.

• Write n = 2k+1 for some k.

• Then n2 = (2k+1)2 = 4k2 +4k+1.

• Therefore, n2 is not divisible by 4.

20 / 33



Example: Proof by Contraposition

Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Proof by Contraposition.
• Suppose n is not even, i.e., n is odd.

• Write n = 2k+1 for some k.

• Then n2 = (2k+1)2 = 4k2 +4k+1.

• Therefore, n2 is not divisible by 4.

20 / 33



Example: Proof by Contradiction
Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Proof by Contradiction.

• Suppose the statement is false–i.e., that n2 is divisible by 4 and n
is not even.

• Since n is not even, we can write n = 2k+1.

• Therefore, n2 = (2k+1)2 = 4k2 +4k+1.

• However, 4k2 +4k+1 = n2 is not divisible by 4, which contradicts
the hypothesis that n2 was divisible by 4.

21 / 33



Example: Proof by Contradiction
Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Proof by Contradiction.

• Suppose the statement is false–i.e., that n2 is divisible by 4 and n
is not even.

• Since n is not even, we can write n = 2k+1.

• Therefore, n2 = (2k+1)2 = 4k2 +4k+1.

• However, 4k2 +4k+1 = n2 is not divisible by 4, which contradicts
the hypothesis that n2 was divisible by 4.

21 / 33



Example: Proof by Exhaustion
Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Proof by Exhaustion.

Use the case C = “n is even.”

Case 1 Suppose n is even, i.e., n = 2k.

• Then n2 = (2k)2 = 4k2.
• Therefore n2 is divisible by 4
• Since n2 is divisible by 4 and n is even, the conclusion holds.

Case 2 Suppose n is not even, i.e., n = 2k+1.

• Then n2 = (2k+1)2 = 4k2 +4k+1.
• Therefore n2 is not divisible by 4.
• Since n2 is not divisible by 4, the conclusion holds.

22 / 33



Example: Proof by Exhaustion
Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Proof by Exhaustion.

Use the case C = “n is even.”

Case 1 Suppose n is even, i.e., n = 2k.

• Then n2 = (2k)2 = 4k2.
• Therefore n2 is divisible by 4
• Since n2 is divisible by 4 and n is even, the conclusion holds.

Case 2 Suppose n is not even, i.e., n = 2k+1.

• Then n2 = (2k+1)2 = 4k2 +4k+1.
• Therefore n2 is not divisible by 4.
• Since n2 is not divisible by 4, the conclusion holds.

22 / 33



Example: Proof by Exhaustion
Proposition

Suppose n is a natural number. If n2 is divisible by 4, then n is divisible
by 2.

Proof by Exhaustion.

Use the case C = “n is even.”

Case 1 Suppose n is even, i.e., n = 2k.

• Then n2 = (2k)2 = 4k2.
• Therefore n2 is divisible by 4
• Since n2 is divisible by 4 and n is even, the conclusion holds.

Case 2 Suppose n is not even, i.e., n = 2k+1.

• Then n2 = (2k+1)2 = 4k2 +4k+1.
• Therefore n2 is not divisible by 4.
• Since n2 is not divisible by 4, the conclusion holds.

22 / 33



Evaluating the Proofs

PollEverywhere Question

Which proof seemed simplest/most
natural to you?

• Direct Proof

• Proof by Contraposition

• Proof by Contradiction

• Proof by Exhaustion
pollev.com/comp526

23 / 33

https://pollev.com/comp526


Proving the Infinite
So Far

• Generic techniques/strategies for proofs

• Not specific to any particular application domain

Proofs for Algorithms

• Correctness: “For every input x, the output of an algorithm A on
input x satisfies {some specification}.”

• Running time: “For every input x, A performs at most {some
number} operations on input x”

Two Features

1. We must reason about infinite sets of events (i.e., all possible
inputs).

2. We must infer globally correct behavior by analyzing individual
local steps of an algorithm.

24 / 33



Proving the Infinite
So Far

• Generic techniques/strategies for proofs

• Not specific to any particular application domain

Proofs for Algorithms

• Correctness: “For every input x, the output of an algorithm A on
input x satisfies {some specification}.”

• Running time: “For every input x, A performs at most {some
number} operations on input x”

Two Features

1. We must reason about infinite sets of events (i.e., all possible
inputs).

2. We must infer globally correct behavior by analyzing individual
local steps of an algorithm.

24 / 33



Mathematical Induction

The Principle of Mathematical Induction

Let P be a predicate over the natural numbers N = {0,1,2, . . .}. Suppose
P satisfies

• Base case: P(0) is true.

• Inductive step: For every i ∈ N, P(i) =⇒ P(i+1).

Then for every n ∈ N, P(n) is true. In strictly symbolic notation:

(P(0))∧ (∀i[P(i) =⇒ P(i+1)]) =⇒ ∀nP(n).

Moral Justification:

25 / 33



Mathematical Induction

The Principle of Mathematical Induction

Let P be a predicate over the natural numbers N = {0,1,2, . . .}. Suppose
P satisfies

• Base case: P(0) is true.

• Inductive step: For every i ∈ N, P(i) =⇒ P(i+1).

Then for every n ∈ N, P(n) is true. In strictly symbolic notation:

(P(0))∧ (∀i[P(i) =⇒ P(i+1)]) =⇒ ∀nP(n).

Moral Justification:

25 / 33



Loop Invariants

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example
Consider the following procedure

1: procedure COUNT(n) ▷ count to n
2: t ← 0
3: for i = 1, . . . ,n do ▷ iterate over indices
4: t ← t +1
5: end for
6: return t
7: end procedure

Loop Invariant:
After iteration i, t
stores the value i.

Proof.
Induct on t. Base case: t
initialized to 0. Inductive
step: clear.

26 / 33



Loop Invariants

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example
Consider the following procedure

1: procedure COUNT(n) ▷ count to n
2: t ← 0
3: for i = 1, . . . ,n do ▷ iterate over indices
4: t ← t +1
5: end for
6: return t
7: end procedure

Loop Invariant:
After iteration i, t
stores the value i.

Proof.
Induct on t. Base case: t
initialized to 0. Inductive
step: clear.

26 / 33



Loop Invariants

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example
Consider the following procedure

1: procedure COUNT(n) ▷ count to n
2: t ← 0
3: for i = 1, . . . ,n do ▷ iterate over indices
4: t ← t +1
5: end for
6: return t
7: end procedure

Loop Invariant:
After iteration i, t
stores the value i.

Proof.
Induct on t. Base case: t
initialized to 0. Inductive
step: clear.

26 / 33



Loop Invariants

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example
Consider the following procedure

1: procedure COUNT(n) ▷ count to n
2: t ← 0
3: for i = 1, . . . ,n do ▷ iterate over indices
4: t ← t +1
5: end for
6: return t
7: end procedure

Loop Invariant:
After iteration i, t
stores the value i.

Proof.
Induct on t. Base case: t
initialized to 0. Inductive
step: clear.

26 / 33



A More Interesting Example

Consider the following subroutine:

1: procedure MININDEX((a, i,k)) ▷

Find the index of the minimum
value stored in array a between
indices i and k.

2: m ← i
3: for j = i, i+1, . . . ,k do
4: if a[j] > a[m] then
5: m ← j
6: end if
7: end for
8: return m
9: end procedure

PollEverywhere Question

What loop invariant does
the loop in MININDEX

satisfy that will help us
analyze its behavior?

pollev.com/comp526

27 / 33

https://pollev.com/comp526


A More Interesting Example

1: procedure MININDEX((a, i,k)) ▷

Find the index of the minimum
value stored in array a between
indices i and k.

2: m ← i
3: for j = i, i+1, . . . ,k do
4: if a[j] < a[m] then
5: m ← j
6: end if
7: end for
8: return m
9: end procedure

Loop Invariant

After iteration j, m stores
the index of the minimum
value of a between indices i
and j.

Proof.
Induct on j

• Base case: j = i.

• Inductive step:
j =⇒ j+1

28 / 33



A More Interesting Example

1: procedure MININDEX((a, i,k)) ▷

Find the index of the minimum
value stored in array a between
indices i and k.

2: m ← i
3: for j = i, i+1, . . . ,k do
4: if a[j] < a[m] then
5: m ← j
6: end if
7: end for
8: return m
9: end procedure

Loop Invariant

After iteration j, m stores
the index of the minimum
value of a between indices i
and j.

Proof.
Induct on j

• Base case: j = i.

• Inductive step:
j =⇒ j+1

28 / 33



A More Interesting Example

1: procedure MININDEX((a, i,k)) ▷

Find the index of the minimum
value stored in array a between
indices i and k.

2: m ← i
3: for j = i, i+1, . . . ,k do
4: if a[j] < a[m] then
5: m ← j
6: end if
7: end for
8: return m
9: end procedure

Loop Invariant

After iteration j, m stores
the index of the minimum
value of a between indices i
and j.

Proof.
Induct on j

• Base case: j = i.

• Inductive step:
j =⇒ j+1

28 / 33



Further Application
Consider the following algorithm that uses MININDEX as a subroutine:

1: procedure SELECTIONSORT(a,n) ▷ Sort the array a of size n
2: for i = 1,2, . . . ,n do
3: j ← MININDEX(a, i,n)
4: SWAP(a, i, j)
5: end for
6: end procedure

Exercise (Tutorials)
Show that SELECTIONSORT correctly sorts any array a of length n.
Specifically:

• Find a suitable loop invariant satisfied by SELECTIONSORT

• Prove your loop invariant holds (by induction)

• Argue that your loop invariant implies the final array is sorted

29 / 33



Induction and Recursion
Induction is essential in reasoning about recursively defined methods.

A Recursive Method
1: procedure MYSTERY(n)
2: if n = 1 then
3: return 1
4: end if
5: return 2n−1+MYSTERY(n−1)
6: end procedure

PollEverywhereQuestion

What is the output of MYSTERY(5)?

pollev.com/comp526
30 / 33

https://pollev.com/comp526


Analysis of a Mystery

1: procedure MYSTERY(n)
2: if n = 1 then
3: return 1
4: end if
5: return

2n−1+MYSTERY(n−1)
6: end procedure

Claim
For all n, MYSTERY(n) returns the
value n2.

Proof.
Induction on n. Base Case: n = 1.
Inductive step: Suppose
MYSTERY(n) = n2. Then

MYSTERY(n+1) = 2n+1

+MYSTERY(n)

= 2n+1+n2

= (n+1)2.

31 / 33



Analysis of a Mystery

1: procedure MYSTERY(n)
2: if n = 1 then
3: return 1
4: end if
5: return

2n−1+MYSTERY(n−1)
6: end procedure

Claim
For all n, MYSTERY(n) returns the
value n2.

Proof.
Induction on n. Base Case: n = 1.
Inductive step: Suppose
MYSTERY(n) = n2. Then

MYSTERY(n+1) = 2n+1

+MYSTERY(n)

= 2n+1+n2

= (n+1)2.

31 / 33



Analysis of a Mystery

1: procedure MYSTERY(n)
2: if n = 1 then
3: return 1
4: end if
5: return

2n−1+MYSTERY(n−1)
6: end procedure

Claim
For all n, MYSTERY(n) returns the
value n2.

Proof.
Induction on n. Base Case: n = 1.
Inductive step: Suppose
MYSTERY(n) = n2. Then

MYSTERY(n+1) = 2n+1

+MYSTERY(n)

= 2n+1+n2

= (n+1)2.

31 / 33



Next Time

• Machines and Models
• What can computers do?
• And how efficiently?

• Asymptotic Notation

32 / 33



Scratch Notes

33 / 33


	Motivation
	Basic Logic
	Proof Techniques
	Mathematical Induction
	Loop Invariants and Recursion

