
Module Outline and Exam Revision

COMP526: Efficient Algorithms

January 6, 2025

This note gives an exhaustive list of the topics that may appear in the final

exam for COMP526: Efficient Algorithms.

Contents

1 Logic, Proof Techniques, and Asymptotic Notation 1

2 Machines and Models 2

3 Fundamental Data Structures 2

4 Efficient Sorting 3

5 String Matching 3

6 Compression 4

7 Error-Correcting Codes 4

8 Parallel Algorithms 5

9 Text indexing 5

1 Logic, Proof Techniques, and Asymptotic Notation

Definitions and operations to know

• Logical proposition

• Logical connectives ∧, ∨, ¬, =⇒ , ⇐⇒

• Truth tables

• Satisfiability, Contradiction, Tautology

• Logical equivalence

• Logical predicate

• Existential and universal quantifiers ∃ and ∀

• Negation of quantified expressions

Concepts/Techniques Proofs will not be tested explicitly on the exam,

but you should be familiar with the following techniques employed

throughout the module:

• Direct proof: P =⇒ Q

• Proof by contraposition: (P =⇒ Q) ≡ (¬Q =⇒ ¬P )

• Proof by contradiction: (P =⇒ Q) ≡ ((P ∧¬Q) =⇒ false)

• Proof by exhaustion: (P =⇒ Q) ≡ ((P ∧ A =⇒ Q)∧ (P ∧¬A =⇒ Q))



M O D U L E O U T L I N E A N D E X A M R E V I S I O N 2

• Mathematical induction

• Loop invariants

• Amortized analysis

2 Machines and Models

Computational Models

• The RAM model, supported operations and their running times

• The PRAM (Parallel RAM) model

Asymptotic Notation

• Definitions of O,Ω,Θ, ω, and o

• Comparison of classes of asymptotic growth: constant, poly-logarithmic,

polynomial, exponential

• How asymptotics interact with arithmetic

• Identifying dominant term(s) in an expression

3 Fundamental Data Structures

Abstract Data Types

• Array ADT

• Stack

• Queue

• Priority Queue

• Map/Associative Array/Dictionary

• Set

Data Structures & Implementations

• Array data structure

• Linked List

• Binary Trees

– Complete Binary Tree

– Binary search trees

– Balanced Binary Tree (AVL Tree)

• Heap

• Trie

• Amortized analysis of a sequence of operations



M O D U L E O U T L I N E A N D E X A M R E V I S I O N 3

4 Efficient Sorting

Elementary Sorting Algorithms

• SelectionSort

• InsertionSort

• BubbleSort

Sorting by Divide & Conquer

• MergeSort

• QuickSort

• RadixSort

Other Sorting Methods and Concepts

• HeapSort

• CountingSort

• Lower bound for comparison based sorting algorithms

Divide & Conquer Beyond Sorting

• Binary search of sorted arrays

• k-selection problem

• Majority problem

• Closest points in the plane

5 String Matching

• String matching problem definition and variations (first occurrence,

all occurrences)

• Brute force algorithm for string matching

• DFA algorithm for string matching

– DFA lookup table construction

• Knuth-Morris-Pratt (KMP) algorithm of string matching

– Failure link automaton

– Failure link array definition and computation

• Boyer-Moore algorithm



M O D U L E O U T L I N E A N D E X A M R E V I S I O N 4

6 Compression

• Data compression task definition

• Source text, coded text, encoding, decoding

• Compression ratio

• Lossless vs lossy compression

• Character encoding

• Prefix codes (and their connection to trees)

• Fixed length vs variable length codes

• Huffman codes

– Optimality of Huffman codes as character codes

– Huffman tree construction

– How to apply tie-breaking rules for tree construction

– Encoding and decoding with the Huffman tree

• Intuitive interpretation of entropy (not formal definition)

• Limitations of general compression

– Kolmogorov complexity

– Definition of Kolmogorov complexity

– Non-computability of Kolmogorov complexity

• Run-length encoding (RLE)/Elias encoding

– encode/decode text using RLE

• Lempel-Ziv-Welch (LZW) Encoding

– encode/decode using LZW encoding

• Move-to-Front (MTF) Transform

– encode/decode using MTF transform

• Burrows-Wheeler Transform

– apply Burrows-Wheeler transform to a text

– apply inverse Burrows-Wheeler transform to a text

7 Error-Correcting Codes

• Definition of error correction and detection tasks

• Definition of block codes, Hamming distance, code distance

• Decoding block codes

• Lower bounds (requirements) for detecting and correcting using block

codes



M O D U L E O U T L I N E A N D E X A M R E V I S I O N 5

• Parity bits

• (7,4) Hamming codes

– how to encode a message

– detecting errors in encoded messages

– correcting errors in encoded message

• How Hamming codes are generalized to larger block lengths

8 Parallel Algorithms

• Understand the PRAM model and processing elements (PEs) concep-

tually; pseudocode for parallel algorithms (“in parallel” keyword)

• Definitions of span/time/depth and work, and how these quantities

can be computed

• Definition of work-efficient algorithm

• Understand Brent’s theorem

• Parallel Searching

– brute-force parallel string matching (span and work)

– parallel Knuth-Morris-Pratt algorithm (span and work)

• Comparator networks and sorting networks

– interpretation of a comparator network and execution of compara-

tor networks on an input

– definition of sorting network

– definitions of size and depth of a comparator network

– relationship between simple sorting algorithms and sorting net-

works (e.g., insertion sort)

• Parallel MergeSort algorithm

– Parallel merge operation

– Span and work of Parallel MergeSort

9 Text indexing

• Building and searching a trie data structure for a given pattern

• Compact tries

• Suffix tree definition and computation

– computation with the “naive” algorithm

– using suffix trees for string matching

– using suffix trees for finding repeated substrings

• Suffix array definition and computation

• Longest common prefix array definition and computation

• Inverse suffix array and computation


	Logic, Proof Techniques, and Asymptotic Notation
	Machines and Models
	Fundamental Data Structures
	Efficient Sorting
	String Matching
	Compression
	Error-Correcting Codes
	Parallel Algorithms
	Text indexing

