Lecture 33: Nonblocking
Linked Lists

COSC 273: Parallel and Distributed
Computing

Spring 2023

Annoucements

1. Quiz on concurrent linked lists due Today S-00 pw
2. Next leaderboard submission on Monday

Primes LLeaderboard

Baseline: 58810ms
1. Deadlock Dodgers (4358 ms)

No others were significantly faster than the baseline.

Tips from Deadlock Dodgers?

Read Docupmaplation

S Halead ?QQRS
o ol (ot Conube)

> {QXVD\(\/\ SGWLL'HM‘V\]
Rlocke wuwdhod — Lnd Dlives

N\ {&V\%L_
Tosle = 1 blecl
5 Wt o tusle Compla

> Fodante s 'C&dl—

Notes on Space Usage

P Blo e v Rodtan B¢ Gy
Skacls ok vale skoct

.‘S’PYL\ML

pﬁ(‘d‘ou-x(f Sork — " dunol
Piudk Cdu(c,(k-fo{ -
Sortiyg Leaderboard

Baseline: 8034ms
ek
1. Sunny Day (561lms) €— ?C'-(O*“Ll >3 .

9. MRC (1580ms) T g0 Bt \¥
3. Team ZN2214ms) L
(/ _Qu\ \ S

(oSSt
Céu.ic\&jof{’/

QOQAKUJ\CLL {0 CnlS (L Ces

s.

Tips from Sunny Day?

Previously

Concurrent Linked Lists, Four Ways:

1. Coarse locking

» lock the whole data structure for every operation
2. Fine-grained locking

 lock individual nodes to avoid conflicts
3. Optimistic locking

e search without locks, lock on find, then validate
4. Lazy removal

e like optimistic, but with logical removal

e wait-free contains implementation!

—

Performance v. Size, 128 Threads

== (CoarseList == FineList OptimisticList == Lazylist
10000
. 5000
n
E
0
o
(@)
=
- 1000
e}
e 500
=
(@]
£ \0K
c
v
100 q
50

10 50 100 500 1000

Universe Size (number of distinct elements)

5000

2LX

Time v. Threads, 8 Elements

== (CoarseList == FineList OptimisticList == Lazylist

150
»
E
2 100
(@)
=
S —
G,) /
£ —
|_
o 50
c
c
c
>
e

0
1 5 10 50 100

Number of Threads

Time v. Threads, 8,192 Elements

H

== (CoarseList == FineList OptimisticList == Lazylist
10000 — — T —
»
E
o 1000
o
(@)
2 \
S
> 100
£
|_
(@]
=
= 10
>
e
1
1 5 10 50

Number of Threads

100

Today
Nonblocking linked lists!

Question. Can we avoid locks entirely?

Lazy List and Locks

Ovs WO N~

Traverse without locking \/
Lock relevant nodes T
Validate list ®

Perform operation o
Unlock nodes _—

..

Why Does LazyList Need Locks?

Validataion:

validate (Node pred, Node curr) {

!pred.marked && !curr.marked && pred.next == curr;
Ww—-—-'——_—__’-

Modification (e.g., add):

Node node = Node(item); .

node.next = curr;

—_) pred.next = node;

Why Does LazyList Need Locks?

Validataion:

validate (Node pred, Node curr) {

!pred.marked && !curr.marked && pred.next == curr;

Modification (e.g., add):

Node node Node(item) ;

node.next curr;

pred.next node;

The 1ssue:

e Validation and modification are separate steps

e Must enforce that nodes are unchanged between
validation and mod

An Idea

If we can

1. combine validation and modification steps
2. perform this operation atomically

then maybe we can avoid locking?

er
Better living with atomics! [e s DL
. (ed ©

. é;c(())lrllscMa rkableReference<T> o, Pumw Mok
* ro Yo L

1. areferencetoaT \q:

2. aboolean marked e N L
e Atomic operations

1. boolean compareAndSet(T expectedRef, T newRef,
boolean expectedMark, boolean newMark)

2. T get(boolean[] marked)

3. T getReference()
4. boolean isMarked()

An Algorithm?

Use AtomicMarkableReference<Node> for Node references
- It v
e mark indicates logical removal — Wk \Nua\' S

For add/remove: \Ma((u.({ A
1. Find location Cenl ‘(\t\(& e
2. Validate and modity la 3a<q\(y Cowmond

e (first logically remove if remove)

e use compareAndSet to atomically
1. check that predecessor not removed (marked)
2. update next field of predecessor

For contains:

e Just traverse the list!

NonblockinglList Design

See NonblockinglList. java

1. For Node class, AtomicMarkableReference<Node> next
is marked if this Node is logically removed

e separate logical/physical removal as in LazyList
2. SeparateWindow class stores two Nodes: prev, curr
3. NonblockingList method find returns a Window

e find also removes any marked nodes encountered

find Db twed e
\I\OCSL ‘QOJ O %&J'M/\

ey / valuae

NonblockinglList Design

See NonblockinglList. java

1. For Node class, AtomicMarkableReference<Node> next
is marked if this Node is logically removed

e separate logical/physical removal as in LazyList
2. Separate Window class stores two Nodes: prev, curr
3. NonblockingList method find returns a Window

« find also removes any marked nodes encountered

Question. Why should methods perform physical removal
for other pending operations?

Removal Sketch

1. Find Node curr storing value with predecessor pred
2. Mark curr for (logical) removal

e set mark of cur.next to true

e retry if this fails
3. Perform physical removal o2

e update p red.next Jm (@

(S l&~ Vol cc&c&\M) /L\1 .
3 /
/ﬁ / —

Cu\((

?(Qd

Removal in Code I

remove (T item) ({

key = item.hashCode();

snip;

() |
Window window = find(head, key); éf,’. . V\G&.
A-e.m/\

Node pred = window.pred; &.
. - \oT-
Node curr = window.curr; Q{/’ AN

(curr.key != key) { HE

Removal in Code 11

remove (T item) ({

Node succ = curr.next.getReference(); //

snip = curr.next.compareAndSet(succ, succ,

(1snip) { SO |oc‘.co~\ waow-f ‘IS
[E%edJnext.compareAndSet(curr, succ,

A Puzzle

Question. Why don’t we care about return value of
pred.next.compareAndSet’

remove (T item) ({

) A

pred.next.compareAndSet (curr, succ,

°
14

Performance v. Size, 1 Thread

== (CoarseList == FineList OptimisticList == Lazylist == NonblockingList
—~ 10000
n
E
" 5000
o
(@)
=
S
~ 1000
£
— 500
(@]
c
'c
c
>
e
100
50
10 50 100 500 1000 5000

Universe Size (number of distinct elements)

Performance v. Size, 128 Threads

== (CoarseList == FineList OptimisticList == Lazylist == NonblockingList
10000
. 5000
n
E
0
o
(@)
=
- 1000
e}
e 500
=
(@]
c
c
& ’
100
50

10 50 100 500 1000 5000

Universe Size (number of distinct elements)

Time v. Threads, 8 Elements

== (CoarseList == FineList OptimisticList == Lazylist == NonblockingList
250

- 200
E
0
o
s 150
S
()
g 100
=
€ / I
c
S 50 —/
e

0

1 5 10 50 100

Number of Threads

Time v. Threads, 8,192 Elements

|

== (CoarseList == FineList OptimisticList == Lazylist == NonblockingList
1000

100

10

Running Time for 1M ops (ms)

1 5 10 50

Number of Threads

100

