
Lecture 33: Nonblocking
Linked Lists

COSC 273: Parallel and Distributed
Computing

Spring 2023

Annoucements
1. Quiz on concurrent linked lists due Today
2. Next leaderboard submission on Monday

e 5:00pm

Primes Leaderboard
Baseline: 58810ms

1. Deadlock Dodgers (4358 ms)

No others were signi!cantly faster than the baseline.

Tips from Deadlock Dodgers?

Read Documentation

-> thread pools

-> Collable (not runnable)
-- return something

Block muthod -> find primes
in range

Task =1block
->waitfor task comple

->Future interface

Notes on Space Usage
Prime Block:Boolean Array

isPrime

starts atvalue
start

isPrime [i] = =true

if Startto is prime

2 B. Bookans=> v 2B es
-

Not Bits

Icha:use bytes (8 bits)

use a single bytetoencode

8 bits byte b

firstbit
=b&1, second b22,

third b24...

Sorting Leaderboard
Baseline: 8034ms

1. Sunny Day (511ms)
2. MRC (1580ms)
3. Team 2 (2214ms)

Arrays. Sort - "dual
-

~ pirot quicksort
L

-- Parallel Sort
-

Javer Built

I (In future, use
-

don't beenmark)
recursive
quicksort,
parallelize recursive

calls.

Tips from Sunny Day?

Previously
Concurrent Linked Lists, Four Ways:

1. Coarse locking
lock the whole data structure for every operation

2. Fine-grained locking
lock individual nodes to avoid con"icts

3. Optimistic locking
search without locks, lock on !nd, then validate

4. Lazy removal
like optimistic, but with logical removal
wait-free contains implementation!
-

Performance v. Size, 128 Threads

X

Hox 12x

Time v. Threads, 8 Elements

Time v. Threads, 8,192 Elements

Today
Nonblocking linked lists!

Question. Can we avoid locks entirely?

Lazy List and Locks
1. Traverse without locking
2. Lock relevant nodes
3. Validate list
4. Perform operation
5. Unlock nodes

~

⑤

③ I C.S.-

Why Does LazyList Need Locks?
Validataion:

Modi!cation (e.g., add):

private boolean validate (Node pred, Node curr) {
 return !pred.marked && !curr.marked && pred.next == curr;
}

Node node = new Node(item);
node.next = curr;
pred.next = node; // this is the only step that modifies list!

-

[↑

only modification step.

Why Does LazyList Need Locks?
Validataion:

Modi!cation (e.g., add):

private boolean validate (Node pred, Node curr) {
 return !pred.marked && !curr.marked && pred.next == curr;
}

Node node = new Node(item);
node.next = curr;
pred.next = node; // this is the only step that modifies list!

The issue:

Validation and modi!cation are separate steps
Must enforce that nodes are unchanged between
validation and mod

An Idea
If we can

1. combine validation and modi!cation steps
2. perform this operation atomically

then maybe we can avoid locking?
-

A Tool
Better living with atomics!

AtomicMarkableReference<T>
Stores
1. a reference to a T
2. a boolean marked
Atomic operations
1. boolean compareAndSet(T expectedRef, T newRef,

boolean expectedMark, boolean newMark)
2. T get(boolean[] marked)
3. T getReference()
4. boolean isMarked()

if(ref ==expected
8&Mark

==

expected)

ref t new Ref

mareat newMark

return true

↑ elsgeturn false

An Algorithm?
Use AtomicMarkableReference<Node> for Node references

mark indicates logical removal

For add/remove:

1. Find location
2. Validate and modify

(!rst logically remove if remove)
use compareAndSet to atomically
1. check that predecessor not removed (marked)
2. update next !eld of predecessor

For contains:

Just traverse the list!

- if "next"is
marked, then
cur node is

logically removed

NonblockingList Design
See NonblockingList.java

1. For Node class, AtomicMarkableReference<Node> next
is marked if this Node is logically removed

separate logical/physical removal as in LazyList
2. Separate Window class stores two Nodes: prev, curr
3. NonblockingList method find returns a Window

find also removes any marked nodes encounteredT
find pred and zurr

nocle for a given

key/value

NonblockingList Design
See NonblockingList.java

1. For Node class, AtomicMarkableReference<Node> next
is marked if this Node is logically removed

separate logical/physical removal as in LazyList
2. Separate Window class stores two Nodes: prev, curr
3. NonblockingList method find returns a Window

find also removes any marked nodes encountered

Question. Why should methods perform physical removal
for other pending operations?

-

Removal Sketch
1. Find Node curr storing value with predecessor pred
2. Mark curr for (logical) removal

set mark of cur.next to true
retry if this fails

3. Perform physical removal
update pred.next toremove
(self-validation) A

-W L L-> ->mark-

↑ a
curr

pred

Removal in Code I
public boolean remove(T item) {
int key = item.hashCode();
boolean snip;
while (true) {
 Window window = find(head, key);
 Node pred = window.pred;
 Node curr = window.curr;
 if (curr.key != key) { return false; }

// curr contains item
...
}

}

-

-

t not

1
item
X in

list.

Removal in Code II
public boolean remove(T item) {
 ...
 while (true) {
 ...
 // curr contains item
 Node succ = curr.next.getReference();
 snip = curr.next.compareAndSet(succ, succ, false, true);
 if (!snip) {continue;}
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }
}

X
alogical removal fails

I 7
⑭
pres removed

N↳
pred curr succ

A Puzzle
Question. Why don’t we care about return value of
pred.next.compareAndSet?

public boolean remove(T item) {
 while (true) {
 ...
 // curr logically removed
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }
}

Performance v. Size, 1 Thread

Performance v. Size, 128 Threads

Time v. Threads, 8 Elements

Time v. Threads, 8,192 Elements

