Lecture 33: Nonblocking
Linked Lists
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Annoucements

1. Quiz on concurrent linked lists due Today S-00 pw
2. Next leaderboard submission on Monday




Primes LLeaderboard

Baseline: 58810ms
1. Deadlock Dodgers (4358 ms)

No others were significantly faster than the baseline.



Tips from Deadlock Dodgers?
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Tips from Sunny Day?



Previously

Concurrent Linked Lists, Four Ways:

1. Coarse locking

» lock the whole data structure for every operation
2. Fine-grained locking

 lock individual nodes to avoid conflicts
3. Optimistic locking

e search without locks, lock on find, then validate
4. Lazy removal

e like optimistic, but with logical removal

e wait-free contains implementation!
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Performance v. Size, 128 Threads
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Time v. Threads, 8 Elements
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Time v. Threads, 8,192 Elements
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Today
Nonblocking linked lists!

Question. Can we avoid locks entirely?



Lazy List and Locks
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Why Does LazyList Need Locks?

Validataion:

validate (Node pred, Node curr) {

!pred.marked && !curr.marked && pred.next == curr;
Ww—-—-'——_—\__’-

Modification (e.g., add):

Node node = Node(item); .

node.next = curr;

—_ ) pred.next = node;




Why Does LazyList Need Locks?

Validataion:

validate (Node pred, Node curr) {

!pred.marked && !curr.marked && pred.next == curr;

Modification (e.g., add):

Node node Node(item) ;

node.next curr;

pred.next node;

The 1ssue:

e Validation and modification are separate steps

e Must enforce that nodes are unchanged between
validation and mod



An Idea

If we can

1. combine validation and modification steps
2. perform this operation atomically

then maybe we can avoid locking?
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e Atomic operations

1. boolean compareAndSet(T expectedRef, T newRef,
boolean expectedMark, boolean newMark)

2. T get(boolean[] marked)

3. T getReference()
4. boolean isMarked()



An Algorithm?

Use AtomicMarkableReference<Node> for Node references
- It v
e mark indicates logical removal — Wk \Nua\' S

For add/remove: \Ma((u.({ A
1. Find location Cenl ‘(\t\(& e
2. Validate and modity la 3a<q\(y Cowmond

e (first logically remove if remove)

e use compareAndSet to atomically
1. check that predecessor not removed (marked)
2. update next field of predecessor

For contains:

e Just traverse the list!



NonblockinglList Design

See NonblockinglList. java

1. For Node class, AtomicMarkableReference<Node> next
is marked if this Node is logically removed

e separate logical/physical removal as in LazyList
2. SeparateWindow class stores two Nodes: prev, curr
3. NonblockingList method find returns a Window

e find also removes any marked nodes encountered
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NonblockinglList Design

See NonblockinglList. java

1. For Node class, AtomicMarkableReference<Node> next
is marked if this Node is logically removed

e separate logical/physical removal as in LazyList
2. Separate Window class stores two Nodes: prev, curr
3. NonblockingList method find returns a Window

« find also removes any marked nodes encountered

Question. Why should methods perform physical removal
for other pending operations?



Removal Sketch

1. Find Node curr storing value with predecessor pred
2. Mark curr for (logical) removal

e set mark of cur.next to true

e retry if this fails
3. Perform physical removal o2

e update p red.next Jm (@
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Removal in Code I

remove (T item) ({

key = item.hashCode();

snip;

( ) |
Window window = find(head, key); éf,’. . V\G&.
A-e.m/\

Node pred = window.pred; &.
. - \oT-
Node curr = window.curr; Q{/’ AN

(curr.key != key) { HE




Removal in Code 11

remove (T item) ({

Node succ = curr.next.getReference(); //

snip = curr.next.compareAndSet(succ, succ,

(1snip) { SO |oc‘.co~\ waow-f ‘IS
[E%edJnext.compareAndSet(curr, succ,




A Puzzle

Question. Why don’t we care about return value of
pred.next.compareAndSet’

remove (T item) ({

) A

pred.next.compareAndSet (curr, succ,
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Performance v. Size, 1 Thread
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Performance v. Size, 128 Threads
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Time v. Threads, 8 Elements
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Time v. Threads, 8,192 Elements
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