
Lecture 32: Lazy Linked Lists
COSC 273: Parallel and Distributed

Computing

Spring 2023

Annoucements
1. Quiz on concurrent linked lists released today, due

Friday
2. Next leaderboard submission on Monday
3. First leaderboad results soon

-

Last Time
Concurrent Linked Lists, Three Ways:

1. Coarse locking
lock the whole data structure for every operation

2. Fine-grained locking
lock individual nodes to avoid con!icts

3. Optimistic locking
search without locks, lock on "nd, then validate

Optimistic Insertion

Step 1: Traverse the List

↑
8
wed to

-

insert
between
nocks

these

Step 1: Traverse the List

Step 1: Traverse the List

Step 2: Acquire Locks

Step 3: Validate List - Traverse

Step 3: Validate List - pred Reachable?

Step 3: Validate List - Is curr next?

Step 4: Perform Insertion

Step 5: Release Locks

Performance v. Size, 1 Thread

Performance v. Size, 128 Threads

·O

i I
6 D

-FN
longerValidation failure? lists

Time v. Threads, 8 Elements

! i

Time v. Threads, 8,192 Elements

-

-

Parallelism helps
~I opt, list, if
little contention

Coarse Time v. Threads

Fine Time v. Threads

Optimistic Time v. Threads

F

↓

Larger set
=more benefitfrom

more cores/threads

Further Improvement?
Question. What is undesireable about optimistic locking?

-> Validation requires second

Llist traversal 3
-> Validation failure costs

even more

Optimism and Validation
Under best circumstances:

validation succeeds
likely if little contention

still traverse the list twice

Under contention:

all operations are blocking
not wait-free

contention can lead to validation failures
not starvation-free

Observation
Operations are complicated because they consist of
several steps

hard to reason about when the operation appears to take
place
coarse/"ne-grained synchronization stop other threads
from seeing operations “in progress”
optimistic synchronization may encounter “in progress”
operations before locking

validation required

Overly Optimistic?
Question. What operation(s) interfere with add/remove
and how? When do we need to validate starting at the
head?

-- +..+-
I Graci

cars

head

Con!icting add Operations

We...ste...... - -

possible contention only wi

add between pred/cur

- docally chackable

examine pred next

Con!icting remove Operations
Suggestion:add bookan "is removed"

value to node

-
E.-..........
head
I pred cur (

removed
removed

=>prednext

now: need
to

was updated
validate from

head
(local check)

Alt check pred's next?
-

when rewing set prednext hull?

Improved Validation?
Question. How could we modify remove method to make
validation more e#cient?

·Add boolean val to

indicate logical removal
-

to each noc

·startremoval by flipping
bit.

Lazy Synchronization
A simple strategy

Mark a node before physical removal
marked nodes are logically removed, still physically
present

Only marked nodes are ever removed

Validation simpli"ed:

Just check if nodes are marked
No need to traverse whole list!

Lazy Operation
1. Traverse without locking
2. Lock relevant nodes
3. Validate list

check nodes are
not marked
correct relationship

if validation fails, go back to Step 1
4. Perform operation

for removal, mark node "rst
5. Unlock nodes

Lazy Removal Illustrated

Step 1: Traverse List

Step 1: Traverse List

Step 2: Lock Nodes

Step 3: Validate pred.next == curr?

Step 3: Validate not marked?

Step 4a: Perform Logical Removal

Step 4b: Perform Physical Removal

Step 5: Release Locks and Done!

In Code
LazyList.java in linked-lists.zip

A Node in Code
 private class Node {

T item;
int key;
Node next;
Lock lock;
volatile boolean marked;

 ...
 }

-

Validation, Simpli"ed
private boolean validate (Node pred, Node curr) {
 return !pred.marked && !curr.marked && pred.next == curr;
}

Improvements?
1. Limited locking as in optimistic synchronization
2. Simpler validation

faster—no second list traversal
more likely to succeed?

3. Logical removal easier to reason about
linearization point at logical removal line

4. contains() no longer acquires locks
o$en most frequent operation
now it is wait-free!

en

[

What About Performance?

Performance v. Size, 1 Thread

--

II

Performance v. Size, 128 Threads

E I(i
lots of

contention
cualidation errors)

Time v. Threads, 8 Elements

Time v. Threads, 8,192 Elements

Further Improvements?
What could be done better?

1. concurrent add/remove operations can still block one
another

2. operations are still not starvation free

Further Improvements?
What could be done better?

1. concurrent add/remove operations can still block one
another

2. operations are still not starvation free

Question. Can we avoid locks entirely?

