Lecture 28: Sorting COSC 273: Parallel and Distributed Computing Spring 2023

This Week

- Homework 03 Due Today
- Final Project group & topic selection, also due Today

sub linh soon

- Option 1: computing prime numbers
- Option 2: sorting
- Option 3: choose your own adventure

Sorting

The Task

Input. A (large) array float[] values

Task. Modify values so that the values are increasing.

Scale.values.length = $1_048_576 (= 2^{20})$ Baseline.Arrays.sort(values) $\leftarrow Java$

• include java.util.Arrays

Sorting by Divide-and-Conquer Bubble Sort

(w) (m²

want

(000)

Cart

General Strategy:

- break problem up into smaller sub-tasks
- solve sub-tasks
- combine sub-solutions to get total solution

Question 1. How to divide sorting problem? , tition Sight left Sout Sort mer

Sorting by Divide-and-Conquer

General Strategy:

- break problem up into smaller sub-tasks
- solve sub-tasks
- combine sub-solutions to get total solution

Question 1. How to divide sorting problem?

Question 2. How might parallelism help?

If have sub-tasks maybe can golve some subtasks in parallel.

Strategy 1: Divide by Index

Idea. (merge sort)

- 1. Split array into left and right sub-arrays
- 2. Sort left and right (recurringly)
- 3. Merge sorted left and right

Example. Sort [4, 2, 3, 1] 3,1 [4,2] 21,37 [2, 4]merge 1 1 C1, 2, 3, 43

Parallelism?

Question. What can be performed in parallel?

splif

mes

sost right

- 1. Split array into left and right sub-arrays
- 2. Sort left and right
- 3. Merge sorted left and right

011 Sort 69 Mera Dasa Fork-join Pool

Strategy 2: Divide by Value

Idea. (quick sort)

- 1. Select a value pivot from array
- 2. Partition array into left and right sub-arrays
 - values in left are <= pivot, values in right are >
- 3. Sort left and right

Example. Sort [4, 2, 3, 1]

Parallelism?

Question. What can be performed in parallel?

- 1. Select a value pivot from array
- 2. Partition array into left and right sub-arrays
 - values in left are <= pivot, values in right are >
- 3. Sort left and right

(Dis)advantages? Merge sort: split, sub-sort, merge Quick sort: partition, sort < 'eff 4 recursive sorts wait for no one! - Postitioning is hard to parallelize

Merge Operation

Question. How to merge two sorted arrays?

Speeding Up Merge?

Question. Can we improve performance of merge operation with SIMD instructions?

Partition Operation?

Question. How to partition an array given a pivot?

Speeding Up Partition?

Question. Can we improve performance of partition with SIMD instructions?

Next Week

- 1. Fork-join pools: thread pools tailored to recursive methods!
- 2. Sorting networks: the art of sorting small arrays