
Lecture 25: Atomic Locks
COSC 273: Parallel and Distributed

Computing

Spring 2023

-

Announcements
Homework 03 is !nalized

no new questions
due next Friday

Today
More Lock Implementations

Last Time:
Peterson lock implementation

peterson-lock.zip
disappointment

it didn’t achieve mutual exclusion!

Peterson Lock Code
class PetersonLock {
 private boolean[] flag = new boolean[2]; private int victim;
 public void lock () {
 int i = ((PetersonThread)Thread.currentThread())
 .getPetersonId();
 int j = 1 - i;
 flag[i] = true; victim = i;
 while ((flag[0] && flag[1]) && victim == i) {};}
 public void unlock () {
 int i = ((PetersonThread)Thread.currentThread()).getPetersonId();

flag[i] = false;}}

-

-

-
E

-

-
nee
-

Memory Consistency!
11 Cache ·

coherence

- - - -

vict.

-Y

volatile Variables
Java can make variables visible between threads:

use volatile keyword
individual read/write operations to volatile are atomic

Drawbacks:

volatile variables are less e"cient
only single read/write operations are atomic

e.g. count++ not atomic
only primitive datatypes are visible

if volatile SomeClass..., only the reference is
treated as volatile

e

Making Variables Volatile
In PetersonLock

flag: an array (object) can’t be volatile
replace with boolean flag0, flag1

victim
In LockedCounter

count

- -

--

int
-

S

Fixing Implementation
peteson-lock.zip

Finally!!!
What have we done?

1. Proven correctness of a lock
idealized model of computation
atomic read/write operations

2. Implemented lock
used Java to resemble idealized model

3. Used lock
saw expected behavior

Theory and practice converge!

Peterson: Good and Bad
The Good:

1. It works!
2. It only uses read/write operations!

The Bad:

1. It only works with two threads!
2. Ugly implementation

need a separate PetersonThread to assign IDs

Question. How could we lock more simply?

Better Tech!
Use more advanced Atomic Objects!

Introducing the AtomicBoolean class:

var ab = new AtomicBoolean(boolean value) make
an AtomicBoolean with initial value value
ab.get() return the current value
ab.getAndSet(boolean newValue) atomically set the
value to newValue and return the old value
ab.compareAndSet(boolean expected, boolean new)
atomically update to new if previous value was expected
and return whether or not the value was updated

-

~

I I
[I

- -

- - -

if (value = =expected)
value =new

return true

else
return false

A Simpler Lock?
Question. How could we use AtomicBooleans to design a
simpler lock?
-

Idea: use array of atomic b
for flags

Another icha: have one A. B.

to store "state"of lock

A.B, locked:

-> toobtain setlocked to true

only obtain lock if

- locked was false,
and

- Isetit to time

Test and Set Lock
Idea. An AtomicBoolean locked stores state of the lock:

locked.get() == true indicates the lock is in use
locked.get() == false indicates the lock is free

Obtaining the lock:

wait until locked is false, and set it to true
Releasing the lock:

set locked to false

TASLock in Code

download tas-locks.zip

import java.util.concurrent.atomic.AtomicBoolean;
public class TASLock implements SimpleLock {
 AtomicBoolean locked = new AtomicBoolean(false);
 public void lock () {
 while (locked.getAndSet(true)) {}
 }
 public void unlock () {
 locked.set(false);
 }
}

=

>

Progress Guarantees
Question. Is TASLock deadlock-free? Starvation-free?
-

Alternative Implementation
Potential Issue:

getAndSet operation is somewhat ine"cient
slower than just get

Test and Test and Set Lock:

check if locked
if not, attempt getAndSet
return if successful

TTASLock Implementation
public class TTASLock implements SimpleLock {
 AtomicBoolean locked = new AtomicBoolean(false);
 public void lock () {

while (true) {
 while (locked.get()) {};
 if (!locked.getAndSet(true)) { return;}
}

 }
 public void unlock() { locked.set(false);}
}

Comparing E"ciency
tas-locks.zip

