
Lecture 23: A Queue
Without Locks & Progress

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements
1. Homework 03 Posted Soon

due Friday, April 14th
2. Final Projects Announced Soon

small groups
3. Short quiz on Friday, April 7th

Given two implementations, which is faster?
Reason about parallelism/locality of reference

version
lim

pre Weds.
by
-

Question From Last Time
Is it possible to implement a (sequentially consistent?
linearizable?) queue without locks?

·Wrap-around grave

tal
head

Enqueue Without Locks
What could go wrong with concurrent enq?

 public void enq (T value) {
 Node nd = new Node(value);
 tail.next = nd;
 tail = nd;
 }

E I

-

Possible Linearization Point?
 public void enq (T value) {
 Node nd = new Node(value);
 tail.next = nd;
 tail = nd;
 }

*

I
eltis "logically"added
to linked list f

accessible to other

threads

Maybe? Can see there's a potential
problem if we try tosettail next
andtailnextI will

New Tech: AtomicReferences

E!ect of compareAndSet(expected, update):

if nd’s current value is expected, then update value to
update

return true
if nd’s current value is not expected, do not update its
value

return false

// an AtomicReference pointing to someNode
var nd = new AtomicReference<Node>(someNode);

// try to update nd to refer to updated
nd.compareAndSet(expected, update);

->
Einitvalue

-

How Could Atomic References Help?
When can(‘t) we update tail.next and tail?

 public void enq (T value) {
 Node nd = new Node(value);
 tail.next = nd;
 tail = nd;
 }

(1)
-
13)

tail:atomic ref

tail, next. Compare And Set (null, na
↳keep trying until success
-

Iftail notupdated, Makes itto

update it! I (2) success,doesn't exec
137

Enqueue Idea
To do:

1. update tail.next to nd
2. update tail to nd
Under what conditions can we apply these?

Can update tail.next only if tail.next == null
Try to update tail.next to nd:
1. set last to tail, next to tail.next
2. check if last is still null
3. update last.next to nd only if last.next is still null
4. if 3 fails, try to update tail to next-
↳ repeatfrom 1. compare

set

Enqueue Idea in Pictures
tail

↓ notnull

X-Fnext j--
null
c↳

last.Next

I null↳taupdate
it

no ther
CeS last. Next I I update tail

LockFreeQueue
public class LockFreeQueue<T> implements SimpleQueue<T> {
 private AtomicReference<Node> head;
 private AtomicReference<Node> tail;
 ...
 public void enq(T item) {...}
 public T deq() throws EmptyException {...}
 class Node {
 public T value;
 public AtomicReference<Node> next;
 ...
 }
}

E

E
t

Lock Free enq
 public void enq(T item) {

if (item == null) throw new NullPointerException();
Node node = new Node(item);
while (true) {
 Node last = tail.get();
 Node next = last.next.get();
 if (last == tail.get()) {

if (next == null) {
 if (last.next.compareAndSet(next, node))

tail.compareAndSet(last, node); return;
} else {
 tail.compareAndSet(last, next);}}}}

lastf

&- -th

E

↳- B last is still
- fail
-

-

-

is still e end

↑
new elfadded toqueue

->

Whathappens if every other thread

stops?
-> then my thread succeeds

in nextiteration of loop.

Linearization Point (if any)?
 public void enq(T item) {

if (item == null) throw new NullPointerException();
Node node = new Node(item);
while (true) {
 Node last = tail.get();
 Node next = last.next.get();
 if (last == tail.get()) {

if (next == null) {
 if (last.next.compareAndSet(next, node))

tail.compareAndSet(last, node); return;
} else {
 tail.compareAndSet(last, next);}}}}

critical d

-[3
->[I

Not linearization itbecause

op can full, butdetermines

when new item is in queue

Exercise
How could we redesign deq?

 public T deq() throws EmptyException {
 if (head.next == null){throw new EmptyException();}
 value = head.next.value;
 head = head.next;

 return value;
 }

Comparing Progress
Which lock is “better?”

UnboundedQueue?
LockFreeQueue?

more "obviously"correct

-

7which is faster?

Deadlock? everyone's
progress depends
on no one

crashing

UnboundedQueue Enqueue
 public void enq (T value) {

enqLock.lock();
try {
 Node nd = new Node(value);
 tail.next = nd;
 tail = nd;
} finally {
 enqLock.unlock();
}

 }

LockFreeQueue Enqueue
 public void enq(T item) {

if (item == null) throw new NullPointerException();
Node node = new Node(item);
while (true) {
 Node last = tail.get();
 Node next = last.next.get();
 if (last == tail.get()) {

if (next == null) {
 if (last.next.compareAndSet(next, node))

tail.compareAndSet(last, node); return;
} else {
 tail.compareAndSet(last, next);}}}}

e

UnboundedQueue Progress
Guarantee: Starvation Freedom (assuming lock is
starvation-free)

if all pending method calls continue to take steps, then
every pending method call completes in a "nite number
of steps

this is blocking progress: if even one thread stops taking
steps, then all other threads can be impeded

Question. When is this “good?”

LockFreeQueue Progress
Guarantee: Lock Freedom

if some pending method call makes progress, then some
pending method call completes in a "nite number of
steps

this is nonblocking progress: if some threads stall,
others are still guaranteed to make progress

Question. When is this “good?”

Which Guarantee Is Better
1. Starvation Freedom?
2. Lock Freedom? Itdepends !

Progress, 4 Ways
Blocking Progress:

deadlock freedom if all threads take steps, some
completes in "nite time
starvation freedom if all threads take steps, all complete
in "nite time

Nonblocking Progress:

lock freedom if some threads take steps, some completes
in "nite time
wait freedom all threads taking steps complete in "nite
time

What About Performance?
Demo: concurrent-queues.zip

Coming Up
Lock Implementations
Concurrent Linked Lists

