Lecture 21: Linearizability II COSC 273: Parallel and Distributed Computing Spring 2023

Announcements

- 1. Quiz this Friday
 - sequential consistency
 - linearizability
 - recall stack operations
 push(x), pop()

Last Time: Linearizability

An execution of a shared object is **linearizable** if:

• exists a *linearization point* in each method call such that execution is consistent with sequential execution where method calls occur in order of corresponding linearization points

An implementation of an object is linearizable if every execution is linearizable.

Linearizable TwoCounter

ThreeCounter Example

A read Method

$\Gamma_{\rm e}$	
Los read() [
	· · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • • • •
inc(24 inc(2)	
	a a construction of the second s
What value is returned	by lead(1:
· · · · · · · · · · · · · · · · · · ·	
where possible values	rom linearizable exec:
$U_1 - U_1 + T$	

Is ThreeCounter Linearizable?

NOPe.

Writing Between the Lines

```
public int read () {
```

}

int count = counts[0]; count = count + counts[1]; count = count + counts[2]; return count;

Sequentially Consistency

Questions.

- 1. Is the previous execution sequentially consistent?
- 2. Is ThreeCounter sequentially consistent?

A Queue Again

Question. How to implement a (non-concurrent) queue with a linked list? $e^{\sqrt{q}} \leftarrow add c^{\sqrt{q}}$

A Concurrent Queue

- Use linked list implementation of queue
- Store:
 - Node head sentinal
 - deq returns head.next value (if any), updates head
 - Node tail
 - enq updates tail.next, updates tail
- Locks:
 - enqLock locks eng operation
 - deqLock locks deq operation
 - individual Nodes are not locked

Unbounded Queue in Pictures

Dequeue 1: Aquire deqLock

Dequeue 2: Get Element (or Exception)

Dequeue 3: Update head

Dequeue 4: Release Lock

Enqueue 1: Make Node

Enqueue 2: Acquire enqLock

Enqueue 3: Update tail.next

Enqueue 4: Update tail

Enqueue 5: Release Lock

Question Why do we need the sentinel node?

UnboundedQueue in Code

```
public class UnboundedQueue<T> implements SimpleQueue<T> {
    final ReentrantLock enqLock;
    final ReentrantLock deqLock;
    volatile Node head;
    volatile Node tail;

    public UnboundedQueue() {
        head = new Node(null); tail = head;
        enqLock = new ReentrantLock();
        deqLock = new ReentrantLock(); }
    ...
}
```

Node Class

```
class Node {
   final T value;
   volatile Node next;

   public Node (T value) {
     this.value = value;
   }
}
```

enq Method

```
public void enq (T value) {
    enqLock.lock();
    try {
        Node nd = new Node(value);
        tail.next = nd;
        tail = nd;
    } finally {
        enqLock.unlock();
    }
}
```

deq Method

```
public T deq() throws EmptyException {
   T value;
   deqLock.lock();
   try {
      if (head.next == null){throw new EmptyException();}
      value = head.next.value;
      head = head.next;
      return value;
   } finally {
      deqLock.unlock();
   }
}
```

Is UnboundedQueue Linearizable?

- 1. What concurrent operations do we need to consider?
- 2. What internal states do we need to consider?
- 3. What are the linearization points (if any)?

Pertinent Lines

```
public void enq (T value) {
    Node nd = new Node(value);
    tail.next = nd;
    tail = nd;
}
public T deq() throws EmptyException {
    if (head.next == null){throw new EmptyException();}
    value = head.next.value;
    head = head.next;
    return value;
}
```

Next Time

Concurrent queues without locks?!?!