
Lecture 21: Linearizability II
COSC 273: Parallel and Distributed

Computing

Spring 2023

Announcements
1. Quiz this Friday

sequential consistency
linearizability
recall stack operations

push(x), pop()-I

Last Time: Linearizability
An execution of a shared object is linearizable if:

exists a linearization point in each method call such that
execution is consistent with sequential execution where
method calls occur in order of corresponding
linearization points

An implementation of an object is linearizable if every
execution is linearizable.

Linearizable TwoCounter
public class TwoCounter {
 int[] counts = new int[2];
 public void increment (int amt) {
 int i = ThreadID.get(); // thread IDs are 0 and 1
 int count = counts[i];
 counts[i] = count + amt;
 }
 public int read () {
 int count = counts[0];
 count = count + counts[1];
 return count;
 }}

-;;
&

&

->

[
-s

inc(3)
O TescoS

read()
A sad

ThreeCounter Example
public class ThreeCounter {
 int[] counts = new int[3];

 public void increment (int amt) {
 int i = ThreadID.get(); // thread IDs are 0, 1, and 2
 int count = counts[i];
 counts[i] = count + amt;
 }
}

t
[X

S

8

S

· I
↑ ↑4
⑧ I 2

-

->

-

Ex

A read Method
 public int read () {
 int count = counts[0];
 count = count + counts[1];
 count = count + counts[2];
 return count;
 }

-
->
Ne137)

(2) read()(3)
- return (3)

0 ,93939951)3

inc[27,,inc(3)

to] reaCK) 22]

- - ,,
213

i
2 -Ai

inc(3)

What value is returned by read()?
-> 5

whatpossible values from linearizable exec?

0, 2, 4, 7

Is ThreeCounter Linearizable?

Nope.

Writing Between the Lines
 public int read () {
 int count = counts[0];
 count = count + counts[1];
 count = count + counts[2];
 return count;
 }

Sequentially Consistency
Questions.

1. Is the previous execution sequentially consistent?
2. Is ThreeCounter sequentially consistent?

A Queue Again
Question. How to implement a (non-concurrent) queue
with a linked list?

enc t
ad an item

remove "oldest"de E

ifier.

(double) linked list

-head:oldest item

- tail =newest
tail

head WeI ↓nex

E -
Nowthe-

2) I 22 (3)

A Concurrent Queue
Use linked list implementation of queue
Store:

Node head sentinal
deq returns head.next value (if any), updates head

Node tail
enq updates tail.next, updates tail

Locks:
enqLock locks enq operation
deqLock locks deq operation
individual Nodes are not locked

-

-

-

u

Unbounded Queue in Pictures

~ ~
-

~ e

↑

Dequeue 1: Aquire deqLock

Dequeue 2: Get Element (or Exception)

h

Dequeue 3: Update head

Dequeue 4: Release Lock

Wo
↑
new

sentinal
noce

Enqueue 1: Make Node

Enqueue 2: Acquire enqLock

Enqueue 3: Update tail.next

Enqueue 4: Update tail

Enqueue 5: Release Lock

- (1)(2)

Question
Why do we need the sentinel node?

UnboundedQueue in Code
public class UnboundedQueue<T> implements SimpleQueue<T> {
 final ReentrantLock enqLock;
 final ReentrantLock deqLock;
 volatile Node head;
 volatile Node tail;

 public UnboundedQueue() {
head = new Node(null); tail = head;
enqLock = new ReentrantLock();
deqLock = new ReentrantLock(); }

 ...
}

Node Class
 class Node {

final T value;
volatile Node next;

public Node (T value) {
 this.value = value;
}

 }

enq Method
 public void enq (T value) {

enqLock.lock();
try {
 Node nd = new Node(value);
 tail.next = nd;
 tail = nd;
} finally {
 enqLock.unlock();
}

 }

deq Method
 public T deq() throws EmptyException {

T value;
deqLock.lock();
try {
 if (head.next == null){throw new EmptyException();}
 value = head.next.value;
 head = head.next;

 return value;
} finally {
 deqLock.unlock();
}

 }

Is UnboundedQueue Linearizable?
1. What concurrent operations do we need to consider?
2. What internal states do we need to consider?
3. What are the linearization points (if any)?

Pertinent Lines
 public void enq (T value) {

 Node nd = new Node(value);
 tail.next = nd;
 tail = nd;

 }
 public T deq() throws EmptyException {

 if (head.next == null){throw new EmptyException();}
 value = head.next.value;
 head = head.next;

 return value;
 }

Next Time
Concurrent queues without locks?!?!

