Lecture 20: Linearizability I

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements

1. Lab 03 due tonight

2. Quiz this Friday
e sequential consistency
e linearizability

Previously

An execution of a concurrent object is sequentially
consistent if all method calls can be ordered such that:

1. they are consistent with program order INOAY
9. they meet object’s sequential specification €

An implementation of an object is sequentially consistent
if

1. it guarantees every execution is sequentially consistent

Example: A Queue with Locks

Queue supports eng(x) and deq() operations

e cach instance stores a lock

e wrap eng and deq operations with lock/unlock
» modifications are in critical section

Sample Concurrent Calls

Analyzing lock/unlock Calls
000 u‘s‘ >t L%fc?{'\ 0.0% 0-0F

lock () nlock () lock () deq () unloc
A -- ~ { _Hz ----- >

—

i S —— 1
1og¢k () enqg (V) unlock ()
B ceee ebedecccccccccccccacanaas -

9L e (2 (3)

Mudwel e xc \uslan -:')
CN \SV\&o\\ S&c}ﬂo\/\g dcw& c)\)((\ &P

Equivalent Sequential Execution

lock () nlock ()
A _~~ ~_~ ------
lock () enqg (V) lock ()
B ----- e - S - - - - - - - - - eeeeeeeeeeen

At o locles

‘Two Issues "

1. Calls to eng/deq are blocking

o 1f thread A enters critical section, other threads are
blocked from making progress until A unlocks

2. Sequential consistency is a “weak” notion of correctness

e does not necessarily respect “wall clock” order of
method calls

What are “Acceptable” Outcomes?

930 0:0%

VA

SQ% . COWS 3(’0./\:(é&bk CoOmME. -
E’A/\%Cﬂ - 24/\06043 — C\/\%Q) -3 Q.\/\CG("S'S —> &“6...

<\
: W\ SO (ol
Another idea e g

. Mialke sure execution is consistent withltiming of method
calls

o Consider sequential executions consistent with each
method call taking effect at some nstant during the
method call

Same Example, Fewer Options

Can only change relative order of method calls if they
overlap

LLinearization Points

A linearization point is a point in a method call where
method “takes effect”

. alluevents after linearization point see effect of method
ca

e linearization points must be distinct (correspond to
some atomic operation)

Example of Linearization Points

eng (1) eng (3) deq () deq () deq ()

Equivalent Sequential Execution

eng (1) enqg (3) deq () deq () deq ()

A - —— e —— - - - - g - o - >
q(2) eng (4) deq ()

B -c---- e—— - - - - —— - - - - - - >

An Alternative Sequential Execution

eng (1)

Linearizability
A concurrent execution is linearizable if:

e exists a linearization point in each method call such that
execution 1s consistent with sequential execution where
method calls occur in order of corresponding
linearization points

An implementation of an object is linearizable if:

e it guarantees every execution is linearizable

Back to the Counter

An incorrect (concurrent) counter

Counter { cov\c.u\\NLV‘k
count = 0; C/ oclesy S .

increment () { ++count; }

read() { count; }

Better strategy (e.g., from lab 1)?

eacM 3(\/\/&0\({ \/\O\C& OION QOU\V\-LL(
. f"c) cr_x' Pu\cu(COunf -

S\J\U’\ \OC_(‘J&\ Count s

Wy Weden b
QVA\'\J\\{JLCAA O !

A Counter for Two Threads

TwoCounter ({ Z: 8
[] counts = [2]; é?’—”
increment (amt) {
. e
1 = ThreadID.get();
= counts[i];

= count + amt;

read () {

4’\ - count = counts[0];
Vl _~count = count + counts[1l];

Is TwoCounter Linearizable?

e if not, find a non-linearizable execution
e if so, what are the linearization points for the execution

Linearizing increment

What is the linearization point of increment?

TwoCounter {

increment (amt) {
i = ThreadID.get();

count = counts[i];

}JED lcounts[i] = count + amt; i
}

Counk (o]
Conntt &

o Lotk O

. .. Cwdially
Linearizing read Ry

What is the linearization point of read?

read ()
{1 count =

-{ﬂ, count = count +!counts[1] ’

count;

- l.oscg ‘
e &) 53 o A fe Count EO}
TO E & //L/ 77V E
(~\ \ [y (‘3
TV ¢ =R
C\ VL (% ceod \K' ¢

First Moral

read () {

count = counts[0];

count = count + counts[1l];

count;

The linearization point may depend on

e which thread calls the method
e method calls of other threads

Three Threaded Counter?

How to generalize TwoCounter to three threads?

Three Threaded Counter?

How to generalize TwoCounter to three threads?

ThreeCounter {

[] counts

increment (amt) {

i = ThreadID.get();

count = counts[i];

counts[i] = count + amt;

A read Method

read () {
count = counts[0];

count = count + counts[1l];

count = count + counts[2];

count;

Is ThreeCounter Linearizable’?

Writing Between the Lines

read () {
count = counts[0];

count = count + counts[1l];

count = count + counts[2];

count;

Sequentially Consistency

Questions.

1. Is the previous execution sequentially consistent?
2. Is ThreeCounter sequentially consistent?

Next Time

Linearizable Queues!

