
Lecture 20: Linearizability I
COSC 273: Parallel and Distributed

Computing

Spring 2023

Announcements
1. Lab 03 due tonight
2. Quiz this Friday

sequential consistency
linearizability

Previously
An execution of a concurrent object is sequentially
consistent if all method calls can be ordered such that:

1. they are consistent with program order
2. they meet object’s sequential speci!cation

An implementation of an object is sequentially consistent
if

1. it guarantees every execution is sequentially consistent

-

-

-
ADT

Example: A Queue with Locks
Queue supports enq(x) and deq() operations

each instance stores a lock
wrap enq and deq operations with lock/unlock

modi!cations are in critical section

-
-

-

- -

Sample Concurrent Calls

11/II/IN

111111111111111

Analyzing lock/unlock Calls
crit section 0:07

0:00 0:020:03

-

*wil
0:01

C17 ci

Mutual exclusion ->

critical sections
don't overlap

Equivalent Sequential Execution

-D

Two Issues
1. Calls to enq/deq are blocking

if thread A enters critical section, other threads are
blocked from making progress until A unlocks

2. Sequential consistency is a “weak” notion of correctness
does not necessarily respect “wall clock” order of
method calls

inherent to locks

x

-

What are “Acceptable” Outcomes?
0:020:03

0:00
- -1
E X
--
- -
- #X
- -

0:01 0:040;05

consistentoutcome:
59.

eng() -> eng(ul-> engli)
-> engse) -> dey...

Another idea
Make sure execution is consistent with timing of method
calls
Consider sequential executions consistent with each
method call taking e"ect at some instant during the
method call

absolute clock"
(1

"Wa timing

e

Same Example, Fewer Options

Can only change relative order of method calls if they
overlap

- - ↑

2-
- ->

Linearization Points
A linearization point is a point in a method call where
method “takes e"ect”

all events a#er linearization point see e"ect of method
call
linearization points must be distinct (correspond to
some atomic operation)

Example of Linearization Points

Equivalent Sequential Execution

↑

An Alternative Sequential Execution

1 I

o
?

(1)

↓ ↳
return
2

Linearizability
A concurrent execution is linearizable if:

exists a linearization point in each method call such that
execution is consistent with sequential execution where
method calls occur in order of corresponding
linearization points

An implementation of an object is linearizable if:

it guarantees every execution is linearizable

-

Back to the Counter
An incorrect (concurrent) counter

Better strategy (e.g., from lab 1)?

public class Counter {
 int count = 0;
 public void increment() { ++count; }
 public int read() { return count; }
}

concurrent
↳ access es ->

count may
be wrong

·each thread had own "counter"

to getfinal
count:

sum local counts

A Counter for Two Threads
public class TwoCounter {
 int[] counts = new int[2];
 public void increment (int amt) {
 int i = ThreadID.get(); // thread IDs are 0 and 1
 int count = counts[i];
 counts[i] = count + amt;
 }
 public int read () {
 int count = counts[0];
 count = count + counts[1];
 return count;
 }}

only written by
thread ⑧

↓
- L

it -

-

-

·,
it --
E writer
r I by thread
r2 I-
~3 -

Is TwoCounter Linearizable?
if not, !nd a non-linearizable execution
if so, what are the linearization points for the execution

Linearizing increment
What is the linearization point of increment?

public class TwoCounter {
 public void increment (int amt) {
 int i = ThreadID.get(); // thread IDs are 0 and 1
 int count = counts[i];
 counts[i] = count + amt;
 }
is

Linearizing read
What is the linearization point of read?

 public int read () {
 int count = counts[0];
 count = count + counts[1];
 return count;

initially;
count (0]
count[17

are both o

~ is TI's L.P.
r X > 12 is TO's L.P.v2 -oCV3

inc(-tread O writes

to,
I to, count 50]

W 12 3

+Ireach if rir

happensI d I - after i3
return ⑧ ⑪
⑧
if ri occurs before

i3

First Moral

The linearization point may depend on

which thread calls the method
method calls of other threads

 public int read () {
 int count = counts[0];
 count = count + counts[1];
 return count;

Three Threaded Counter?
How to generalize TwoCounter to three threads?

Three Threaded Counter?
How to generalize TwoCounter to three threads?

public class ThreeCounter {
 int[] counts = new int[3];

 public void increment (int amt) {
 int i = ThreadID.get(); // thread IDs are 0, 1, and 2
 int count = counts[i];
 counts[i] = count + amt;
 }
}

-

A read Method
 public int read () {
 int count = counts[0];
 count = count + counts[1];
 count = count + counts[2];
 return count;
 }

Is ThreeCounter Linearizable?

Writing Between the Lines
 public int read () {
 int count = counts[0];
 count = count + counts[1];
 count = count + counts[2];
 return count;
 }

Sequentially Consistency
Questions.

1. Is the previous execution sequentially consistent?
2. Is ThreeCounter sequentially consistent?

Next Time
Linearizable Queues!

