
Lecture 18: Sequential
Consistency

COSC 273: Parallel and Distributed
Computing

Spring 2023

Lecture 18: Sequential
Consistency

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements
1. Lab 03 Due Friday MONDAY!!

Mandelbrot computations using Vector operations

Make sure your machine supports Vector ops today:

on HPC cluster, !rst run

 > javac --add-modules jdk.incubator.vector SomeFile.java
 > java --add-modules jdk.incubator.vector SomeFile

> module load amh-java/19.0.1

Last Time
Concurrent Objects!

concurrent linked lists:
1. lock the whole list to insert
2. lock a"ected nodes to insert

Option 1 is easy to reason about, but o"ers no bene!t from
parallelism

Option 2 may o"er some performance bene!t from
parallelism, but reasoning about correctness is subtle

coarse locking

- fine-grained
~ locking

-

A Subtle Issue

13x x2

↓
0 ⑧ockA

Ty #
-O ⑧ deadlock
5 T5 get--

Concurrent Queues

Question
What is a queue?

Queue(T) q
:

...

"container"

-

"ustfitofthe sick"
-

- Weve from "other"

From Data Structures
An abstract data type (ADT) speci!es:

1. allowed operations
2. e"ects of operations

return values
updates to internal state of object

Example. Queue ADT?
· eng(x) - enqueue the

element

x (ac to guevel
· cyC-returns an elt. from-

greve olchest elt()

-
orderedcollection of alts added,
butnotyetremoved,

in order

they were added

What Does an ADT Give Us?
For any sequence of operations an
ADT speci!es the results of these operations.

this is a sequential speci!cation of an object

Question. Why is a sequential speci!cation insu#cient for
concurrent objects?

o , o , o , … , op1 p2 p3 pn

OPi is

eng or dleg
for

--

Queue

-
-

overlapping
T1:OP,
11 time

H

T2:OP2 -
OP

Whataboutconcurrentops??

The Challenges of Concurrency
What if two or more operations are performed
concurrently?

What is the “correct” behavior?
How can an implementation guarantee that the correct
behavior occurs?

in general, each operation consists of several
elemenatry steps
must guarantee correct behavior for all interleavings
of elementary operations -

Concurrent Queue Example
Thread 1:

1. enq(x)
2. deq()
Thread 2:

1. enq(y)
Question. What are “acceptable” results of deq()?

I eng(x) happens"before"engly)

7 - engly) happens"before"

⑰ Or ↳
eng(x)

unacceptable:"empty gueve
exception"

b/c T1 enqued befor

deg.

Concurrent Queue Timelines

call to deq() could return either x or y
both reasonable!

any other response seems “un-queue-ish”

↑
should
degre
different

elements

Sequential Consistency

A Sensible Feature
Consider all operations performed by all threads

Each operation has some e"ect

Behavior of execution should be consistent with some
sequential execution of those method calls.

Example.

1. Thread 1 calls enq(1), enq(2), deq(), enq(3)
2. Thread 2 calls enq(4) deq() enq(5) deq()
⑧
oooo
8 6 7 8

Is This Enough?
Behavior of execution should be consistent with some
sequential execution of the method calls.

1. Thread 1 calls enq(1), enq(2), deq(), enq(3)
2. Thread 2 calls enq(4) deq() enq(5) deq()

>
>

2-exception
-

->-

Also must respect
C 1

program order for

each thread

Another Sensible Feature
Method calls should appear to take e"ect in program
order

if a single thread calls op1() before op2(), then op1()
should take e"ect before op2() in sequential execution.

Sequential Consistency
An execution is sequentially consistent if all method calls
can be ordered such that:

1. they are consistent with program order
2. they meet object’s sequential speci!cation

An implementation of an object is sequentially consistent
if

1. it guarantees every execution is sequentially consistent

-

Sequentially Consistent Outcomes?
(1) (2) (3)
- -↳
-

-

-> -> - ->
F
- (4)
-
- -

-

1 1 4

-

&sibe
2: 2

I
andmore

3:3
3

4:4 2
8

Example: A Sequentially
Consistent Queue

An Array-Based Queue
public class LockedQueue<T> {
 int head, tail;
 T[] contents;
 Lock lock;
}

Enqueuing
 public void enq(T x) {
 lock.lock();
 try {
 items[tail] = x;
 tail++;
 } finally {
 lock.unlock();
 }
 }

Dequeueing
 public T deq() {
 lock.lock();
 try {
 T x = items[head];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
 }

What Happens?

What Happens with Locks?

Equivalent Sequential Execution

Why is Queue Sequentially Consistent?

Why is Queue Sequentially Consistent?
Locks!

mutual exclusion property of the Lock ensures that
enq/deq operations are not concurrent

calls to enq/deq can be ordered according to “wall clock”
time of execution of critical sections

Questions
1. Can we achieve sequential consistency without resorting

to locks?
again, this technique is essentially sequential

2. Is sequential consistency enough?

What are “Acceptable” Outcomes?

Next Time
Linearizability: A stronger notion of correctness for
concurrent objects

considers “wall clock” time in addition ot program order

