Lecture 18: Sequential
Consistency

COSC 273: Parallel and Distributed
Computing

Spring 2023

Lecture 18: Sequential
Consistency

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements

1. Lab 03 Due Friday MONDAY!!
e Mandelbrot computations using Vector operations

e Make sure your machine supports Vector ops today:

> javac --add-modules jdk.incubator.vector SomeFile. java

> java --add-modules jdk.incubator.vector SomeFile

on HPC cluster, first run

> module load amh-java/19.0.1

Last Time

Concurrent Objects! C ot

e concurrent linked lists: / L - ﬂs(o.(w‘us

1. lock the whole list to insert x

9. lock affected nodes to insert < \ocnf
Option 1is easy to reason about, but offers no benefit from
parallelism

Option 2 may offer some performance benefit from
parallelism, but reasoning about correctness is subtle

A Subtle Issue

Concurrent Queues

Question QuenlTT 4 -
What is a queue? “Contained - -

" Bk wm Feest ot

—

(&C&C&j s b Mowe >}<5w.“
l\(/ew\odq —CJc)vw O*\/‘J-\(

From Data Structures
An abstract data type (ADT) specifies:

1. allowed operations
2. effects of operations
e return values
e updates to internal state of object

Example. Queue ADT?
¢ NG (x) — EWN Qg e
¢ (add o)
. d&%g\<— (e rons o e\ Lrow
Gt oldese Q}&D

ocdued colechion of Qf“‘s addud,
bab ol yef (amond, in ortll
Yy wite oddied

2 lewment

P

v,
What Does an ADT Give Us? eag oc dyg

For any sequence of operations opy, opz, 0p3, ... ,0p, an Q‘(
ADT specifies the results of these operatlons Qi

e thisis a se guentlal specification of an object

Question. Why is a sequential specification insufficient for

concurrent objects? V)% W *@‘"7
- [_/ ‘ | /
T ° OF T
- 71 [/r7r %
- [reve

. |
T2 - 0P~ r ™S (

\/\I\/\&SV u\ﬁaufc C One Wi fund c)@g?)

The Challenges of Concurrency

What if two or more operations are performed
concurrently?

e What is the “correct” behavior?

e How can an implementation guarantee that the correct
behavior occurs?

» in general, each operation consists of several
elemenatry steps

= must guarantee correct behavior for all interleavings
of elementary operations —

Concurrent Queue Example
Thread 1:

;Z 3232))()17 Ny () WopoemS befote ‘\(’/"\%(‘1)“
Thread 2: x \\a?@\,\g \()an.(k

1. enq(y) zz @\/\%ﬁ‘i eng(x|
h

Question. at are “acceptable” results of deq()?

[x] oc (%

ULV\ac,u_()(m[o(k'o h e,w\?k,(CG\UW“’\-—
B QKUL,\)HdV\“
11 CV\%\A.Q,QX he o<
dug.

b(c

Concurrent Queue Timelines

/

e call to deq() could return either x or y S\/LOUL-K&
= both reasonable! SLGus
e any other response seems “un-queue-ish” (%u‘
do U/Lf

Z(uwm.(S

Sequential Consistency

A Sensible Feature

Consider all operations performed by all threads
e Each operation has some effect

Behavior of execution should be consistent with some
sequential execu of those method calls.

Example.

1. Thread 1 Call
2. Thread 2 Calls nq 5)

Is This Enough?

Behavior of execution should be consistent with somg_
sequential executig

Another Sensible Feature

Method calls should appear to take effect in program
order

e if a single thread calls op1() before op2(), then op1()
should take effect before op2 () in sequential execution.

Sequential Consistency

An execution is sequentially consistent if all method calls
can be ordered such that:

1. they are consistent with program order
2. they meet object’s sequential specification

An implementation of an object is sequentially consistent
if - -

1. it guarantees every execution is sequentially consistent

Sequentially Consistent Outcomes?

U\ (;z.\ Q)_

dq

eq ()

@) 059 (\0(#

Example: A Sequentially
Consistent Queue

An Array-Based Queue

LockedQueue<T> {

head, tail;

T[] contents;
Lock lock;

Enqueuing

enq(T x)
lock.lock();
{

items[tail]

tail++;

{
lock.unlock();

Dequeueling

T deq() {
lock.lock();

{

T x = items[head];

head++;
X;
{
lock.unlock();

What Happens?’

What Happens with Locks?

lock ()

A ﬁﬁlﬁk(__M ------

lock ()

B ----- ——— ~~ ------------------------

Equivalent Sequential Execution

lock () enq (unlock () lock (deq (unlock (
A ~~~ __M ------
lock () enqg (V) unlock ()
B ----- e - S - - - - - - - - - eeeeeeeeeeen

Why 1s Queue Sequentially Consistent?

Why 1s Queue Sequentially Consistent?
Locks!

e mutual exclusion property of the Lock ensures that
enq/deq operations are not concurrent

e calls to eng/deq can be ordered according to “wall clock”
time of execution of critical sections

lock () unlock lock (

A _“M _deﬁ_ ------ >

Questions

1. Can we achieve sequential consistency without resorting
to locks?

e again, this technique is essentially sequential
2. Is sequential consistency enough?

What are “Acceptable” Outcomes?

Next Time

Linearizability: A stronger notion of correctness for
concurrent objects

e considers “wall clock” time in addition ot program order

eng (1) enqg (3) deq () deq () deq ()

A — e — - — - N - >

eng (2) enq (4) deq ()

B ------ - — —— - - - e f—- - >

