
Lecture 16: Thread Pools
COSC 273: Parallel and Distributed

Computing

Spring 2023

Mandelbrot Task
Draw this picture as quickly as possible!

-

Ideas for Improving Performance?
1. Apply SIMD instructions

perform escape time calculations for multiple pixels
at a time

2. Apply multithreading

perform calculations for di!erent regions in parallel

-Vector Ops

I

Color = Running Time!
-fastrunning time

Y
N

slow running
-

Thread pools

So Far
One thread per task

Created Threads and ran them in parallel

implmenet Runnable interface
create and start instances
join to wait until threads "nish

-*
Thread 5

Example: PiEstimator
for (int i = 0; i < numThreads; i++) {
 threads[i] = new Thread(new PiThread(...));
}

for (Thread t : threads) {
 t.start();
}

for (Thread t : threads) {
 try { t.join(); }
 catch (InterruptedException e) { }
}

-make
threadI start for each
task

I waitforall to
complete

PiEstimator Performance
n threads | pi estimate | time (ms)

 1 | 3.14158 | 8174
 2 | 3.14161 | 4690
 4 | 3.14161 | 2709
 8 | 3.14163 | 1735
 16 | 3.14156 | 1867
 32 | 3.14167 | 1938
 64 | 3.14156 | 1905
 128 | 3.14157 | 1907
 256 | 3.14164 | 1919

- Fartill
->

jj
Groassors

my
orcomputer
100
a

slower

overhead
from managing
threads

Observation
Best performance when number of threads = number of
available processors

Reasons:

1. Overhead for creating/starting/waiting for threads
2. All tasks require (roughly) same amount of work

Question. What if tasks are di!erent (unkown) amount of
work?

#tasks =# processors

=>total running time I
max
-
-

Move tasks ->divide up wore

between processors more evenly

Drawbacks of One-Task-Per-Thread
Creating new Threads has signi"cant overhead

best performance by balancing number of
threads/processors available

Need to explicitly partition into relatively few pieces
partitioning may be unnatural
partition may be unbalanced:

don’t know in advance how long computations will
take

When tasks are fairly homogenous (e.g., computing ,
shortcuts) previous approach is good

π

A (Sometimes) Better Way
A nice Java feature: thread pools

Create a (relatively small) pool of threads
Assign tasks to the pool
Available threads process tasks

if all threads occupied, tasks stored in a queue
as threads are completed, threads in pool are reused

When are Thread Pools Better?
Many smaller tasks
Fixed partition of problem may be unbalanced
“Online” problems: set of tasks not known in advance

e.g., processing requests for web server

Thread Pools in Java
Implement Executor interface

void execute(Runnable command) method
More control of task handling: ExecutorService
interface:

submit tasks
wait for tasks to complete
shut down pool (don’t accept new tasks)

-

-

-

Thread Pool Picture

threads
↳-
↳Ewhen i complete

-

Built-in ExecutorService
Implementations
From java.util.concurrent.Executors:

newFixedThreadPool(int nThreads)
make a pool with a "xed number of threads

newSingleThreadExecutor()
make a pool with a single thread

newCachedThreadPool()
make pool that creates new threads as needed (reuses
old if available)

…

-

Using Thread Pools 1
De"ne tasks

public class MyTask implements Runnable {
 ...
 public void run () {
 ...
 }
}

-

-

Using Thread Pools 2
Create a pool, e.g., "xed thread pool

Create and execute tasks

int nThreads = ...;

ExecutorService pool = Exercutors.newFixedThreadPool(nThreads);

MyTask task = new MyTask(...);

pool.execute(task);

#threads
- -pool
e

adds task to guene
E

for the pool

Using Thread Pools 3
Shutting down the pool

Wait for all pending processes to complete (like join()
method)

pool.shutdown();

try {

 pool.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);

} catch (InterruptedException e) {

 // do nothing

}

Max timeoutto wait

-

Example
Shortcuts from Lab 02:

for (int i = 0; i < size; ++i) {
 for (int j = 0; j < size; ++j) {
 float min = Float.MAX_VALUE;

 for (int k = 0; k < size; ++k) {
 float x = matrix[i][k]; float y = matrix[k][j];
 float z = x + y;
 if (z < min)
 min = z;
 }
 shortcuts[i][j] = min;
 }
}

size & 1000

small tijtask

III
How many small tasks?

IM

A Small Task
For "xed row i, col j:

 float min = Float.MAX_VALUE;
 for (int k = 0; k < size; ++k) {

 float x = matrix[i][k]; float y = matrix[k][j];
 float z = x + y;
 if (z < min)
 min = z;
 }
 shortcuts[i][j] = min;

Two Approaches
Approach 1:

Make a separate thread for each task
need size * size threads

Approach 2:

Make a thread pool and let the pool decide
choose pool size from availableProcessors()

Size 512

~ 250k threads

- optofthreads (8)

- 250k tasks

Demo
executer-shortcuts.zip

Lab 03 Suggestions
Lab will be posted early next week

1. Make a Runnable task that uses SIMD parallelism to
compute escape times

2. Use a thread pool to manage tasks

Have a Nice Break!

