
Lecture 15: More Mandelbrot
and Thread Pools

COSC 273: Parallel and Distributed
Computing

Spring 2023

Outline
1. Mandelbrot Task
2. Thread Pools

Mandelbrot Task
Draw this picture as quickly as possible!

#

Y

De!ning the Mandelbrot Set
To determine if is in the Mandelbrot set :

compute

de!ne for

If remains bounded, is in ; otherwise is not in .

c M
= cz1

= + czn z2
n−1 n > 1

zn c M c M

↳ Starting value
Mandelbrot set
E

W

Ist
-
2 IW1024

- 1.5

Depicting the Mandelbrot Set
Make a grid of pixels!

-ycheck
ifin
Mor

not,
color pixel
accordingly

Computing the Mandelbrot Set
Choose parameters:

 number of iterations

 maximum modulus ()

Given a complex number :

compute until

1.
stop because sequence appears unbounded

2. th iteration
stop because sequence appears bounded

if th iteration reached is likely in Mandelbrot set

N
M M > 2

c
= c, = + c, …z1 z2 z2

1
| | ≥ Mzn

N

N c

length - distance

-
- from 0

- W

-

Illustration
https://complex-
analysis.com/content/mandelbrot_set.html

Drawing the Mandelbrot Set
Choose a region consisting of with

Make a grid in the region
For each point in grid, determine if in Mandelbrot set
Color accordingly

a + bi
≤ a ≤xmin xmax
≤ b ≤ymin ymax
- - Y

Counting Iterations
Given a complex number :

compute until

1.
stop because sequence appears unbounded

2. th iteration
stop because sequence appears bounded

if th iteration reached is likely in Mandelbrot set

c
= c, = + c, …z1 z2 z2

1
| | ≥ Mzn

N

N c

Color by Escape Time
1. Color black in case 2 (point is in Mandelbrot set)
2. Change color based on in case 1:

smaller are “farther” from Mandelbrot set

larger are “closer”

n
n

n

E6 to
·

,

Lab 03
Input:

A square region of complex plane

Output:

Escape times for a grid of points in the region
A picture of corresponding region

Goal:

Compute escape times as quickly as possible

I I

Mandelbrot Viewer Demo
mandelbrot.zip

Getting a Single Escape Time
 public static float getValue (ComplexNumber c) {

ComplexNumber z = new ComplexNumber(0, 0);
int iter = 0;
while (iter < MAX_ITER && z.modulus() <= MAX_MODULUS) {
 z = z.times(z).plus(c);
 iter++;
}
return (float) (MAX_ITER - iter) / MAX_ITER;

 }

⑭ ⑩
I --

Getting Many Values
 private void updateBitmap () {

for (int i = 0; i < BOX_WIDTH; i++) {
 for (int j = 0; j < BOX_HEIGHT; j++) {

ComplexNumber c = getValueFromIndices(i, j);
float val = Mandelbrot.getValue(c);
bitmap[i][j] = colorMap(val);

 }
}

 }

~ 1000

En
⑳>
E
-> i IM

iter.

Ideas for Improving Performance?
- multithreading: 1 p es I thread

"apools"

E
- SIMD ops

- Vector API

#
&arithmetic -

mast

incomplete

W tasks

Thread pools

So Far
One thread per task

Created Threads and ran them in parallel

implmenet Runnable interface
create and start instances
join to wait until threads !nish

Drawbacks
Creating new Threads has signi!cant overhead

best performance by balancing number of
threads/processors available

Need to explicitly partition into relatively few pieces
partitioning may be unnatural
partition may be unbalanced:

don’t know in advance how long computations will
take

When tasks are fairly homogenous (e.g., computing ,
shortcuts) previous approach is good

π

A (Sometimes) Better Way
A nice Java feature: thread pools

Create a (relatively small) pool of threads
Assign tasks to the pool
Available threads process tasks

if all threads occupied, tasks stored in a queue
as threads are completed, threads in pool are reused

When are Thread Pools Better?
Many smaller tasks
Fixed partition of problem may be unbalanced
“Online” problems: set of tasks not known in advance

e.g., processing requests for web server

Thread Pools in Java
Implement Executor interface

void execute(Runnable command) method
More control of task handling: ExecutorService
interface:

submit tasks
wait for tasks to complete
shut down pool (don’t accept new tasks)

Built-in ExecutorService
Implementations
From java.util.concurrent.Executors:

newFixedThreadPool(int nThreads)
make a pool with a !xed number of threads

newSingleThreadExecutor()
make a pool with a single thread

newCachedThreadPool()
make pool that creates new threads as needed (reuses
old if available)

…

Using Thread Pools 1
De!ne tasks

public class MyTask implements Runnable {
 ...
 public void run () {
 ...
 }
}

Using Thread Pools 2
Create a pool, e.g., !xed thread pool

Create and execute tasks

int nThreads = ...;

ExecutorService pool = Exercutors.newFixedThreadPool(nThreads);

MyTask task = new MyTask(...);

pool.execute(task);

Using Thread Pools 3
Shutting down the pool

Wait for all pending processes to complete (like join()
method)

pool.shutdown();

try {

 pool.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);

} catch (InterruptedException e) {

 // do nothing

}

Example
Shortcuts from Lab 02:

for (int i = 0; i < size; ++i) {
 for (int j = 0; j < size; ++j) {
 float min = Float.MAX_VALUE;

 for (int k = 0; k < size; ++k) {
 float x = matrix[i][k]; float y = matrix[k][j];
 float z = x + y;
 if (z < min)
 min = z;
 }
 shortcuts[i][j] = min;
 }
}

A Small Task
For !xed row i, col j:

 float min = Float.MAX_VALUE;
 for (int k = 0; k < size; ++k) {

 float x = matrix[i][k]; float y = matrix[k][j];
 float z = x + y;
 if (z < min)
 min = z;
 }
 shortcuts[i][j] = min;

Two Approaches
Approach 1:

Make a separate thread for each task
need size * size threads

Approach 2:

Make a thread pool and let the pool decide
choose pool size from availableProcessors()

Demo
executer-shortcuts.zip

