Lecture 14: Computing the Mandelbrot Set

COSG 273: Parallel and Distributed Computing
Spring 2023

Outline

1. Benchmarking Notes
2. The Mandelbrot Set

Benchmarking Notes

To give "accurate" measure of efficiency:

- test running time of method for many invocations
- run several invocations before starting timing
- "warm up" primes hardware with correct instructions

Benchmarking Demo

Lab 03: Mandelbrot Set

Draw this picture as quickly as possible!

Even Better: Animation

Source: Wikipedia

How?

The Mandelbrot set is a set of complex numbers that satisfy a certain property. We'll need:

1. (Re)view of complex numbers and arithmetic 2. Iterated maps and Mandelbrot set definition 3. Computing and visualizing the Mandelbrot set

Complex Numbers

$(\underline{a}+\underline{b} \underline{i})\left(\underline{c}+d_{\underline{i}}\right)=a c+\underline{a d i}+\underline{b c} \underline{i}+(b \underline{i})(d \underline{i})$

Complex Numbers $=(a c-b d)+(a d+b c) i$

Recall:

- the imaginary number i satisfies $i^{2}=-1$
- complex numbers are number of the form $a+b i$ where a and b are real
- complex arithmetic:
- $(\vec{a})+(\overrightarrow{b j})+(\vec{c})+(\vec{d})=(\widehat{a+c})+(\overline{b+d}) i$
$\cdot(a+b t) \cdot(c+d t)=(a c-b d)+(a d+b c) i \longleftrightarrow$
- modulus (or length):
- $|a+b i|=\sqrt{a^{2}+b^{2}}$

Complex Plane

Associate complex number $a+b i$ with point $(\underline{a}, \underline{b})$ in plane

imaginary

Geometric View of Addition
Addition is vector addition:

Geometric View of Multiplication
Multiplication adds angles, multiplies lengths:

Iterated Operations
Fix a complex number $\left[\right.$ Star tina value z_{2}

- Define sequence $z_{1}, z_{2}, z_{3}, \ldots$ by
- $z_{1}=c$
- for $n>1, z_{n}=z_{n-1}^{2}+c$
- What happens for different values of c ?

$$
\begin{array}{ll}
C=0: & \left.\begin{array}{l}
z_{1}=0 \\
z_{2}=0 \\
z_{3}=0 \\
z_{4}=0
\end{array}\right\} \text { Bounded } \\
\left.C: 1: \quad \begin{array}{l}
z_{1}=1 \\
z_{2}=2 \\
z_{3}=5 \\
z_{4}=25
\end{array}\right\} \text { unbounded }
\end{array}
$$

Mandelbrot Set

The Mandelbrot set is the set M of complex numbers c such that the sequence z_{1}, z_{2}, \ldots remains bounded (i.e., $\left|z_{n}\right|$ does not grow indefinitely)

Question
How can we determine if a given number $a+b i$ is in the Mandelbrot set?

$$
\begin{aligned}
& \text { elbrot set? } \\
& \cdot c=\frac{1}{2}=z_{1} \\
& \cdot z_{2}=\left(\frac{1}{2}\right)^{2}+\frac{1}{2}=\frac{3}{4} z_{2}=0 \\
& \cdot z_{3}=\left(\frac{3}{4}\right)^{2}+\frac{1}{2}=\frac{17}{16} z_{3}=-1 \\
& \cdot z_{4}=\left(\frac{17}{16}\right)^{2}+\frac{1}{2} \quad \begin{array}{l}
4 \\
r_{4}
\end{array}=-1 \\
& \vdots \quad z_{5}=0
\end{aligned}
$$

$$
c=\frac{1}{2} \text { is not in } M \text {. }
$$

Facts

1. If c satisfies $|c|>2$, then c is not in the Mandelbrot set.
2. If $|c| \leq 2$ but some z_{n} satisfies $\left|z_{n}\right|>2$, then c is not in the Mandelbrot set.

Facts

1. If c satisfies $|c|>2$, then c is not in the Mandelbrot set.
2. If $|c| \leq 2$ but some z_{n} satisfies $\left|z_{n}\right|>2$, then c is not in the Mandelbrot set.
Observation. These facts give us a way of excluding points not in M. How?

100
compute $c=z_{1,}, z_{2}, z_{3}, z_{4}, \ldots z_{\mathbb{N}}$
if any $\left|z_{n}\right|>2$, then
C is minot in M

Activity

Determine if the following points are in the Mandelbrot set:

- -1
- i
- $i+1$
- -2

Depicting the Mandelbrot Set

Make a grid of pixels!

Computing the Mandelbrot Set

Choose parameters:

- N number of iterations
- M maximum modulus $(M>2)$

Given a complex number c :

- compute $z_{1}=c, z_{2}=z_{1}^{2}+c, \ldots$ until 1. $\left|z_{n}\right| \geq M$
- stop because sequence appears unbounded 2. N th iteration
- stop because sequence appears bounded
- if N th iteration reached c is likely in Mandelbrot set

Illustration

https://complex-
analysis.com/content/mandelbrot_set.html

Drawing the Mandelbrot Set

- Choose a region consisting of $a+b i$ with
- $x_{\min } \leq a \leq x_{\max }$
- $y_{\min } \leq b \leq y_{\max }$
- Make a grid in the region
- For each point in grid, determine if in Mandelbrot set
- Color accordingly

Counting Iterations

Given a complex number c :

- compute $z_{1}=c, z_{2}=z_{1}^{2}+c, \ldots$ until 1. $\left|z_{n}\right| \geq M$
- stop because sequence appears unbounded 2. N th iteration
- stop because sequence appears bounded
- if N th iteration reached c is likely in Mandelbrot set

Color by Escape Time

1. Color black in case 2 (point is in Mandelbrot set)
2. Change color based on n in case 1 :

- smaller n are "farther" from Mandelbrot set
- larger n are "closer"

Lab 03

Input:

- A square region of complex plane

Output:

- Escape times for a grid of points in the region
- A picture of corresponding region

Goal:

- Compute escape times as quickly as possible

