
Lecture 10: More Locks
COSC 273: Parallel and Distributed

Computing

Spring 2023

Last Time: Fair Locks
Safety Goal:

Both dogs are not simultaneously out in the yard
mutual exclusion property

Liveness Goals:

If a dog needs to go outside, eventually one does
deadlock-freedom property

If a dog needs to go outside, eventually that dog does
starvation-freedom property

-

-

e

Peterson lock Pseudocode
public void lock() {
 int i = ThreadID.get(); // get my ID, 0 or 1
 int j = 1 - i; // other thread's ID

 flag[i] = true; // set my flag
 victim = i; // set myself to be victim
 while (flag[j] && victim == i) {
 // wait
 }
}

me 0 I

-

write op
storic

->-->L

i--
- I-

Peterson unlock Pseudocode
public void unlock() {
 int i = ThreadID.get();

flag[i] = false;
}

Le! O"
Showed:

Mutual Exclusion. If both threads concurrently call
lock(), then both cannot return until other calls
unlock().

Today:

Starvation Freedom. If thread i calls lock() then
eventually thread i returns.

Why?

Starvation Freedom I
Claim. If thread calls lock(), eventually the method will
return.

Case 1. reads flag[B] == false or victim == B.

A

public void lock() {
 int i = ThreadID.get(); // get my ID, 0 or 1
 int j = 1 - i; // other thread's ID
 flag[i] = true; // set my flag
 victim = i; // set myself to be victim
 while (flag[j] && victim == i) { /*wait*/ }
}

A

->

then never enter loop

-> return

(obtain lock)

Starvation Freedom II
Claim. If thread calls lock(), eventually the method will
return.

Case 2. reads flag[B] == true and victim == A.

A

public void lock() {
 int i = ThreadID.get(); // get my ID, 0 or 1
 int j = 1 - i; // other thread's ID
 flag[i] = true; // set my flag
 victim = i; // set myself to be victim
 while (flag[j] && victim == i) { /*wait*/ }
}

A

"WaitFree"

->

↳
-

I enter white loop

Then:
tofalse ou

ifB sets flag
sets self tovictim. Agets

10ak

Starvation Freedom III
Assumption. A!er B obtains lock, B calls unlock()

What then happens to thread A?

 public void unlock() {
 int i = ThreadID.get();
 flag[i] = false;
 }

-

a either thread A reac's

flagtis] is false, obtains

lock

- or thread is call lock again,
Sets victim:Band A

obtains lock

Conclusion II
The Peterson lock satis#es starvation freedom!

Semantics of Peterson Lock
flag variable signals intent to enter CS

easily generalizes to more threads
victim variable signals priority to enter CS

victim = me means you have priority
For more threads

more victims?
how decide priority among victims?

how can this system be fair?

critical
- section

-

Lamport’s Bakery Algorithm
Locks for more threads!

Lamport’s Inspiration for Priority

serving#17

An Attempt
Setup:

 threads, IDs 0, 1,...,n-1
flag is Boolean array of size

flag[i] == true if thread i wants to obtain lock
label is integer array of size

label[i] is priority of thread i

n
n

n i's # from
- I dispenser

An Attempt
Setup:

 threads, IDs 0, 1,...,n-1
flag is Boolean array of size

flag[i] == true if thread i wants to obtain lock
label is integer array of size

label[i] is priority of thread i

n
n

n

Attempt:

indicate intent: set flag[i] = true
set priority: label[i] = 1 +
max(label[0],...,label[n-1])
wait until label[i] is smallest label with corresponding
flag set to true

E

consider
only flagt;T:=
-

~ wI
trul

- I

Question
Why won’t this attempt work?

-> could have multiple
threads w/ same label

Breaking Priority Ties
Two processes may see the same set of tickets and take
same label:

have label[i] == label[j] for i != j

Breaking Priority Ties
Two processes may see the same set of tickets and take
same label:

have label[i] == label[j] for i != j
Solution:

Break ties by ID:

if label[i] == label[j] and i < j, then i has priority

Use lexicographic order on pairs (label[i], i)
-

Question About Tie-breaking
Is this process fair?

Seems we are always giving priority to thread 0…

Buteach successive setting
of labels in strictly increasing

Lamport’s Bakery Algorithm
Fields:

boolean[] flag
flag[i] == true indicates i would like enter CS

int[] label
label[i] indicates “ticket” number held by i

Initialization:

set all flag[i] = false, label[i] = 0

Locking
Locking Method:

The method hasPriority(i) returns true if and only if
there is no k such that

flag[k] == true and
either label[k] < label[i] or label[k] == label[i]
and k < i

public void lock () {
 int i = ThreadID.get();
 flag[i] = true;
 label[i] = max(label[0], ..., label[n-1]) + 1;
 while (!hasPriority(i)) {} // wait
}

Unlocking
Just lower your $ag:

public void unlock() {
 flag[ThreadID.get()] = false;
}

Bakery Algorithm is Deadlock-Free

Why?

public void lock () {
 int i = ThreadID.get();
 flag[i] = true;
 label[i] = max(label[0], ..., label[n-1]) + 1;
 while (!hasPriority(i)) {} // wait
}

First-come-#rst-served (FCFS)
If: writes to label before calls lock(),

Then: enters CS before .

Why?

A B
A B

public void lock () {
 int i = ThreadID.get();
 flag[i] = true;
 label[i] = max(label[0], ..., label[n-1]) + 1;
 while (!hasPriority(i)) {} // wait
}

->

Bakery Algorithm is Starvation-Free
Thread i calls lock():

i writes label[i]
By FCFS, subsequent calls to lock() by j != i have
lower priority
By deadlock-freedom every k ahead of i eventually
releases lock

So:

i eventually served

Bakery Algorithm Satis#es MutEx

Suppose not:

 and concurrently in CS

Assume:

public void lock () {
 int i = ThreadID.get();
 flag[i] = true;
 label[i] = max(label[0], ..., label[n-1]) + 1;
 while (!hasPriority(i)) {} // wait
}

A B
(label(A), A) < (label(B), B) while bothin

Proof (Continued)
Since entered CS:

Must have read
, or

Former can not happen: labels strictly increasing

So read

B

(label(B), B) < (label(A), A)
flag[A] == false

B flag[A] == false

Compare Timelines!
sets true sets waspriorabs

i

flag
to label

A-
-

Af al ap

bf be Dp

-
B

sets sets has priority
flag

to label Creads A's

true label)

Conclusion
Lamport’s Bakery Algorithm:

1. Works for any number of threads
2. Satis#es MutEx and starvation-freedom

Is the bakery algorithm practical?
Two Issues:

1. For threads, need arrays of size
hasPriority method is costly
what if we don’t know how many threads?

2. Assume threads have sequential IDs 0, 1,...
not the case with Java!
thread IDs are essentially random long values

Homework 2 will have questions that address these issues.

n n

Remarkably
We cannot do better:

If threads want to achieve mutual exclusion +
deadlock-freedom, must have read/write registers
(variables)

This is really bad if we have a lot of threads!
1,000 threads means each call to lock() requires
1,000s of reads
each call to hasPriority requires either 1,000s of
reads or a more advanced data structure

Things are messy!

n
n

A Way Around the Bound
Argument relies crucially on fact that the only atomic
operations are read and write

Modern computers o"er more powerful atomic
operations

In Java, AtomicInteger class

getAndIncrement() is supported atomic operation

Homework 2 Use AtomicIntegers to get a cleaner and
more e%cient realization of Lamport’s bakery idea.

Next Week
Vector operations!

